Regresión Lineal Múltiple (Teoria)

1. En clase probamos que para el modelo lineal múltiple:

$$\underline{Y} = \mathbf{X}\beta + \underline{\varepsilon}$$

El estimador por mínimos cuadrados y el de máxima verosimilitud está dado por:

$$\underline{\hat{\beta}} = \left(\mathbf{X}^t \mathbf{X}\right)^{-1} \mathbf{X}^t \underline{Y}$$

En el caso lineal simple sabemos que:

$$\mathbf{X} = \begin{pmatrix} 1 & x_1 \\ 1 & x_2 \\ \vdots & \vdots \\ 1 & x_n \end{pmatrix}_{\substack{n \times 2}} \quad \underline{Y} = \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{pmatrix}_{\substack{n \times 1}} \underline{\beta} = \begin{pmatrix} \beta_0 \\ \beta_1 \end{pmatrix}_{\substack{2 \times 1}}$$

Demuestre entonces que:

$$\underline{\hat{\beta}} = \begin{pmatrix} \hat{\beta}_0 \\ \hat{\beta}_1 \end{pmatrix} = \begin{pmatrix} \overline{y} - \hat{\beta}_1 \overline{x} \\ \frac{S_{xy}}{S_{xx}} \end{pmatrix}$$

- 2. (Propiedades de la matriz **H**).
 - (a) Pruebe que $Var(\hat{\underline{Y}}) = \sigma^2 \mathbf{H}$
 - (b) Para el caso de la regresión lineal simple $y_i = \beta_0 + \beta_1 x_i + \varepsilon_i$. Muestre que los elementos de la matriz H son:

$$h_{ij} = \frac{1}{n} + \frac{(x_i - \overline{x})(x_j - \overline{x})}{S_{xx}} \qquad h_{ii} = \frac{1}{n} + \frac{(x_i - \overline{x})^2}{S_{xx}}$$

3. Sea $X \sim N(\mu, 1)$. Demuestre que entonces que:

$$X^2 \sim \chi_{1,\mu^2}^{2^{\circ}}$$

Donde $\chi_{1,\mu^2}^{2^\circ}$ es la distribución Chi-cuadrado no central con 1 grado de libertad y parámetro de no centralidad μ^2

- 4. Descomposición de la suma de cuadrados en la regresión lineal multiple:
 - En el modelos lineal mulltiple:

$$\underline{Y} = \mathbf{X}\underline{\beta} + \underline{\varepsilon}$$

Demuestre que: $\mathbf{H}\mathbf{X} = \mathbf{X}$

 \bullet Sean $\underline{x}_0,\dots,\underline{x}_k$ las p columnas de la matriz de diseño $\mathbf X$ es decir:

$$\mathbf{X} = (\underline{x}_0 | \underline{x}_1 | \dots | \underline{x}_k)$$

Demuestre que entonces:

$$\mathbf{H}\underline{x}_i = \underline{x}_i$$

• Verifique que en el modelo lineal multiple se cumple que:

$$\sum_{i=1}^{n} e_i = 0$$

$$\sum_{i=1}^{n} e_i \hat{y}_i = 0$$

Donde $e_i = y_i - \hat{y}_i$ es el residual i y $\hat{y}_i = \hat{\beta}_0 + \hat{\beta}_1 x_{1i} + \ldots + \hat{\beta}_p x_{pi}$

Hint: Defina al vector columna de 1's como $\mathbf{1} = (1, 1, \dots, 1)^T$, luego entonces observe que:

$$\sum_{i=1}^{n} e_i = \underline{e}^T \mathbf{1} \qquad \text{Con } \underline{e} = (e_1, e_2, \dots, e_n)^T$$

$$\sum_{i=1}^{n} e_i \hat{y}_i = \underline{e}^T \underline{\hat{Y}} \qquad \text{Con } \underline{\hat{Y}} = (\hat{y}_1, \hat{y}_2, \dots, \hat{y}_n)^T$$

• Utilizando lo anterior verifique que:

$$\sum_{i=1}^{n} (y_i - \overline{y})^2 = \sum_{i=1}^{n} (y_i - \hat{y}_i)^2 + \sum_{i=1}^{n} (\hat{y}_i - \overline{y}_i)^2$$

5. Sea $X_1 \ldots X_n$ m.a. del modelo $N(\mu, \sigma^2)$ demuestre que:

$$\frac{1}{\sigma^2} \sum_{i=1}^n \left(X_i - \bar{X} \right) \sim \chi_{n-1}^2$$

- 6. Sea $X \sim \chi_{k,\lambda}^{2'}$ encuentre $VAR\left(X\right)$
- 7. El presente ejercicio tiene por objetivo construir el estadístico de prueba F para el contraste de hipótesis (Significancia de la Regresión):

$$H_0: \beta_1 = \ldots = \beta_k = 0$$
 vs $H_1: \beta_j \neq 0$ p.a. $j \in \{1, \ldots, k\}$

• Exprese a la suma de cuadrados de la regresón (SCR) como una forma cuadrática función del vector columna $y = (y_1, \dots, y_n)$, es decir encuentre la matriz **A** tal que :

$$SCR = \sum_{i=1}^{n} (\hat{y}_i - \overline{y})^2 = \underline{y}^T \mathbf{A} \underline{y}$$

• Demuestre que la matriz A que encontró es idempotente y simetrrica, ademas demuestre que su rango es k donde k es el número de variables explicativas en el modelo lineal multiple.

• Concluya entonces que bajo H_0

$$\frac{1}{\sigma^2} \sum_{i=1}^n (\hat{y}_i - \overline{y})^2 = \frac{1}{\sigma^2} SCR \sim \chi_{(k)}^2$$

• En clase probamos que:

$$\frac{1}{\sigma^2} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2 = \frac{1}{\sigma^2} SCE \sim \chi^2_{(n-p)}$$

Demuestre que $\frac{1}{\sigma^2}SCR$ y $\frac{1}{\sigma^2}SCE$ son independientes (Hay que probar independencia de dos formas cuadráticas) y concluya que bajo H_0 :

$$F = \frac{\frac{\sum_{i=1}^{n} (\hat{y}_i - \overline{y})^2}{(k)\sigma^2}}{\frac{\sum_{i=1}^{n} (y_i - \hat{y}_i)^2}{(n-p))\sigma^2}} \sim F_{(k,n-p)}$$

8. En el ejercicio anterior se encontró un estadístico de prueba para contrastar la hipótesis:

$$H_0: \beta_1 = \ldots = \beta_k = 0$$
 vs $H_1: \beta_j \neq 0$ p.a. $j \in \{1, \ldots, k\}$

El presente ejercicio tiene como fin probar que el cociente de verosimilitudes generalizado (Neyman-Pearson) nos lleva a este mismo estadístico de prueba, lo que demuestra que el estadístico de prueba genera la región de rechazo óptima

• Bajo H_0 el modelo reducido es de la forma $y_i = \beta_0 + \varepsilon_i$. Demuestre entonces que los estimadores que maximizan la verosimilitud bajo H_0 son:

$$\hat{\beta}_{0_{MV|H_0}} = \overline{y} \qquad \hat{\sigma}_{MV|H_0}^2 = \frac{1}{n} \sum_{i=1}^{n} (y_i - \overline{y})^2 = \frac{1}{n} SCT$$

• Usando lo anterior demuestre entonces que:

$$\sup \mathcal{L}(\Theta_{H_0}) = \left(\frac{1}{\sqrt{2\pi\hat{\sigma}_{MV|H_0}^2}}\right)^n exp\left(-\frac{n}{2}\right)$$

• Bajo H_1 el modelo completo es de la forma $y_i = \beta_0 + \beta_1 x_{1i} + \ldots + \beta_k x_{ki} + \varepsilon_i$. En clase mostramos que los estimadores que maximizan la verosimilitud son:

$$\hat{\underline{\beta}}_{MV|H_1} = (\mathbf{X}^t \mathbf{X})^{-1} \mathbf{X}^t \underline{Y} \qquad \hat{\sigma}_{MV|H_1}^2 = \frac{1}{n} \sum_{i=1}^n (y_i - \hat{y}_i)^2 = \frac{1}{n} SCE$$

Pruebe entonces que:

$$\sup \mathcal{L}\left(\Theta_{H_1}\right) = \left(\frac{1}{\sqrt{2\pi\hat{\sigma}_{MV|H_1}^2}}\right)^n exp\left(-\frac{n}{2}\right)$$

• Con los puntos anteriores demuestre que el cociente de verosimilitudes generalizados toma la siguiente forma:

$$\Lambda = \frac{\sup \mathcal{L}\left(\Theta_{H_0}\right)}{\sup \mathcal{L}\left(\Theta_{H_1}\right)} \le K \Leftrightarrow \frac{\hat{\sigma}_{MV|H_1}^2}{\hat{\sigma}_{MV|H_0}^2} \le K^* \Leftrightarrow \frac{SCE}{SCT} \le K^{**}$$

• Concluya con ayuda del punto anterior que la region de rechazo obtenida por el cociente de verosimilitudes generalizado es:

$$\frac{\frac{\sum_{i=1}^{n}(\hat{y}_{i}-\bar{y})^{2}}{\sigma^{2}(k)}}{\sum_{i=1}^{n}(y_{i}-\hat{y}_{i})^{2}} = \frac{(n-p)\sum_{i=1}^{n}(\hat{y}_{i}-\bar{y})^{2}}{k\sum_{i=1}^{n}(y_{i}-\hat{y}_{i})^{2}} \ge K^{***}$$

Donde $(K, K^*, K^{**}, K^{***})$ son constantes que no dependen de las observaciones (y_1, \ldots, y_n)

9. (Regresión Ponderada). Suponga que tiene el siguiente modelo lineal:

$$\underline{Y} = \mathbf{X}\beta + \underline{\varepsilon}$$
 Con $\operatorname{Var}(\underline{\varepsilon}) = \sigma^2 \mathbf{V}$

Donde V es una matriz simétrica definida positiva tal que puede ser factorizada como V = KK, con K una matriz simétrica no singular, es decir que existe K^{-1} . Ahora defina lo siguiente:

- $\underline{Z} = \mathbf{K}^{-1}\underline{Y}$
- $\bullet \ \mathbf{A} = \mathbf{K}^{-1}\mathbf{X}$
- $\delta = \mathbf{K}^{-1} \varepsilon$
- (a) Observe que cuando transformamos el modelo original $\underline{Y} = \mathbf{X}\underline{\beta} + \underline{\varepsilon}$ multiplicando por la izquierda por la matriz \mathbf{K}^{-1} obtenemos el modelo:

$$\underline{Z} = \mathbf{A}\underline{\beta} + \underline{\delta}$$

Prueba que este nuevo modelo transformado cumple con que $\mathbb{E}(\underline{\delta}) = \underline{0}$ y $\mathrm{Var}(\underline{\delta}) = \sigma^2 \mathbb{I}$

(b) Obtenga $\hat{\beta}$, el vector de estimadores de $\underline{\beta}$, en términos de las matrices \underline{Z} y \mathbf{A} , utilizando el método de mínimos cuadrados, es decir, encuentre $\underline{\beta}$ tal que haga mínima la siguiente expresión :

$$\left\{ \left(\underline{Z} - \mathbf{A}\underline{\beta} \right)^T \left(\underline{Z} - \mathbf{A}\underline{\beta} \right) \right\}$$

- (c) Haga las transformaciones correspondientes para obtener a $\hat{\underline{\beta}}$ en términos de las matrices \underline{Y} y \mathbf{X}
- (d) Suponga ahora que en el modelo lineal:

$$\underline{Y} = \mathbf{X}\underline{\beta} + \underline{\varepsilon}$$

Se tienen los siguientes supuestos: $Var(\varepsilon_i) = \frac{\sigma^2}{w_i}$ (No hay homocedasticidad) y que $Cov(\varepsilon_i, \varepsilon_j) = 0$ con $i \neq j$.

- Encuentre la matriz \mathbf{V} tal que $\operatorname{Var}(\underline{\varepsilon}) = \sigma^2 \mathbf{V}$
- ullet Encuentre la matriz ${f K}$ tal que ${f V}={f K}{f K}$
- \bullet Utilizando los incisos anteriores encuentre el estimador por mínimos cuadrados para β en términos de \underline{Y} y de \mathbf{X}

Regresión Lineal Multiple (Pactica)

10. Utilizando la teora de modelos lineales, encuentre la ecuación de la parabola $f(x) = \beta_0 + \beta_1 x + \beta_2 x^2$ que pasa por los puntos:

(Ver figura 1)

Parabola

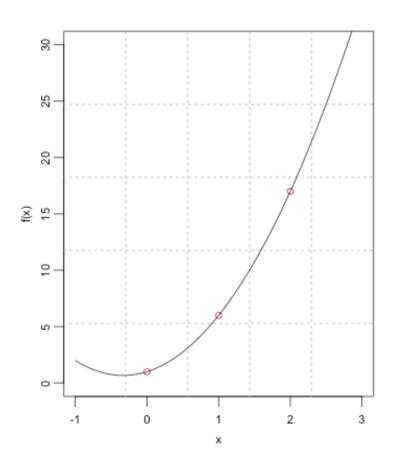


Figure 1: Ajuste de Parabola

11. Complete la siguiente tabla ANOVA: anova(lm(y x))

Analysis of Variance Table

Response: y

Fnte. de Var.	Df.	Sum Sq	Mean Sq	F value	Pr(>F)
х	3		1600.81		< 2.2e-16 ***
Residuals	36	146.9			

Responda lo siguiente

- ¿Con cuantas observaciones se hizo el ajuste?
- ¿Con cuantas variables se hizo el ajuste?
- Tomando $\alpha = 0.01$. ¿Rechazaría la hipótesis H_0 ?
- De un estimador insesgado para σ^2
- De el estimador Máximo Verosimil para σ^2
- Construya un intervalo de confianza al 95% para σ^2
- ¿Cuanto vale $S_{yy} := \sum_{i=1}^{n} (y_i \overline{y})^2$?
- ¿Qué porcentaje de la variabilidad es explicada por el modelo?
- 12. La tabla FootballLeague.csv contiene los datos sobre el desempeño de los equipos de la liga nacional de fútbol de E.U.A. durante 1976.
 - Ajuste un modelo lineal multiple que relaciona el número de juegos ganados con
 - Yardas por aire del equipo (x_2)
 - El porcentaje de Yardas por Tierra (x_7)
 - Las Yardas por tierra del contrario (x_8)

$$y_i = \beta_0 + \beta_1 x_2 + \beta_2 x_7 + \beta_3 x_8 + \varepsilon_i \quad \varepsilon_i \sim N(0, \sigma^2)$$

- Construya la tabla ANOVA y haga la prueba de significancia de la regresión. ¿ Si $\alpha=0.05$, rechazaría H_0 ?
- Calcule R^2 v R^2 ajustado
- Contraste la prueba de hipótesis:

$$H_0: \beta_1 = \beta_3 = 0$$
 $H_1: \beta_1 \neq 0 \text{ o } \beta_3 \neq 0$

- Calcule el vector de valores ajustados por el modelo $\underline{\hat{Y}} = (\hat{y}_1, \hat{y}_2, \dots, \hat{y}_n)$
- Calcule el coeficiente de correlación lineal de Pearson entre y_i , \hat{y}_i .
- Verifique el cuadrado del coeficiente de correlación lineal de Pearson y \mathbb{R}^2 (Coeficiente de Determinación) coinciden
- Calcule el vector de residuales $\underline{e} = (\hat{e}_1, \hat{e}_2, \dots, \hat{e}_n)$, donde $e_i = y_i \hat{y}_i$
- Verifique por medio de pruebas estadísticas los siguiente:

- Normalidad de los residuales (Prueba ShapiroWilk, Anderson Darling, Prueba Lilliefors)
- Homocedasticidad de los residuales (Prueba Levene, Prueba Barttlet)
- Independencia de los Residuales (ACF, Prueba de Rachas)
- Encuentre los intervalos al 98% de confianza para cada uno de los parámetros $\beta_0, \beta_1, \beta_2, \beta_3$
- Encuentre el intervalo al 92% de confianza para la respuesta media de numero juegos ganados cuando $x_2 = 2300$, $x_7 = 56$ y $x_8 = 2100$
- Encuentre el intervalo al 93% de confianza para el numero de juegos ganados (nueva observación) cuando $x_2 = 2100, x_7 = 60$ y $x_8 = 2000$
- 13. Considere el siguiente modelo lineal múltiple:

$$y_i = \beta_0 + \beta_1 x_{1i} + \beta_2 x_{2i} + \beta_3 x_{3i} + \beta_4 x_{4i} + \varepsilon_i \qquad i \in \{1, 2, \dots, 40\}$$

, donde $\underline{\varepsilon} \sim N_n (\underline{0}, \sigma^2 \mathbb{I})$.

Se ajustó el modelo anterior utilizando un paquete estadístico y arrojó la siguiente TABLA ANOVA:

Fnte. de Var.	Df.	Sum Sq	Mean Sq	F value	Pr(>F)
х		18053.2			< 2.2e-16 ***
Residuals					
Total		18876.6			

(2 Puntos) Complete la Tabla ANOVA y responda lo siguiente:

- ¿Cuál es la hipótesis nula que se contrasta en esta tabla ANOVA?
- Tomando $\alpha = 0.01$. ¿Rechazaría la hipótesis nula anterior? (Justifique su respuesta)
- Proporcione el valor de la estimación de σ^2 por Máxima Verosimilitud
- ¿Cuánto vale $\sum_{i=1}^{n} (y_i \overline{y})^2$ y $\sum_{i=1}^{n} (\hat{y}_i \overline{y})^2$?
- ¿Qué porcentaje de la variabilidad es explicada por el modelo completo?
- ¿Cuánto vale R^2 ajustada del modelo completo?

El paquete estadístico también arrojó la siguiente información:

Coefficients	Estimate	Std Error	T value	Pr(> t)
(Intercept)	4.18132	2.71979	1.537	0.1332
X_1	1.03215	0.06223	16.586	<2e-16
X_2	-0.11146	0.06241	-1.786	0.0828
X_3	-0.08882	0.05222	-1.701	0.0979
X_4	1.04013	0.05106	20.371	<2e-16

(1 Punto) Tomando $\alpha = 0.04$, responda lo siguiente (Justifique su respuesta):

• ¿Rechazaría la hipótesis $H_0: \beta_0 = 0$ vs $H_0: \beta_0 \neq 0$?

- ¿Rechazaría la hipótesis $H_0: \beta_2 = 0$ vs $H_0: \beta_2 \neq 0$?
- ¿Rechazaría la hipótesis $H_0: \beta_4 = 0$ vs $H_0: \beta_4 \neq 0$?

Con los mismos datos, se procedió ahora ajustar un modelo reducido eliminando las variables X_2 y X_3

$$y_i = \beta_0 + \beta_1 x_{1i} + \beta_4 x_{4i} + \varepsilon_i$$
 $i \in \{1, 2, \dots, 40\}$

El paquete estadístico arrojó la siguiente TABLA ANOVA para este modelo reducido:

Fnte. de Var.	Df.	Sum Sq	Mean Sq	F value	Pr(>F)
х		17912.1			< 2.2e-16 ***
Residuals					
Total		18876.6			

(2 Puntos) Complete la Tabla ANOVA y responda lo siguiente:

- ¿Cuál es la hipótesis nula que se contrasta en esta tabla ANOVA?
- Tomando $\alpha = 0.01$. ¿Rechazaría la hipótesis nula? (Justifique su respuesta)
- De el estimador insesgado para σ^2 de este modelo reducido
- Calcule el estadístico de prueba para contrastar la hipótesis:

$$H_0: \beta_2 = \beta_3 = 0$$
 $H_1: \beta_2 \neq 0$ o $\beta_3 \neq 0$

- ¿Tomando $\alpha = 0.05$ rechazaría la hipótesis anterior?
- ¿Cuál modelo elegiría: el modelo completo o el modelo reducido? (Justifique)