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Abstract We demonstrate how to add a custom distribution
into the general-purpose, open-source, cross-platform graph-
ical modeling package JAGS (“Just Another Gibbs Sam-
pler”). JAGS is intended to be modular and extensible, and
modules written in the way laid out here can be loaded at
runtime as needed and do not interfere with regular JAGS
functionality when not loaded. Writing custom extensions
requires knowledge of C++, but installing a new module can
be highly automatic, depending on the operating system. As
a basic example, we implement a Bernoulli distribution in
JAGS. We further present our implementation of the Wiener
diffusion first-passage time distribution, which is freely
available at https://sourceforge.net/projects/jags-wiener/.

Keywords Custom distributions . JAGS . Bayesian .

Diffusion model . HDM

Introduction

JAGS (“Just Another Gibbs Sampler”; Plummer, 2003) is a free
software package for the analysis of Bayesian models. JAGS
uses a suite of Markov chain Monte Carlo methods—that is,
general-purpose stochastic simulation methods—to draw sam-
ples from the joint posterior distribution of the parameters of a
Bayesian model. These samples can then be used to draw infer-
ences regarding themodel parameters andmodel fit. JAGS uses a
dialect of the BUGS language (Lunn, Jackson, Best, Thomas, &
Spiegelhalter, 2012; Thomas, Spiegelhalter, & Gilks, 1992) to
express directed acyclic graphs, a mathematical formalism to
define joint densities. What makes JAGS particularly interesting,

however, is that it is designed to be extensible with user-defined
functions, monitors, distributions, and samplers.1

The goal of the present article is to provide a how-to guide
to writing custom extensions for JAGS. Although JAGS is
envisioned as a flexible and extensible (modular) framework
and contains an infrastructure for customization, at the time
of writing, no tutorials, technical manuals, or other sources
on how to do so were available.

In the following section, we describe in detail how custom
distributions may be implemented in JAGS. This section
assumes some knowledge of the C++ programming language
(and of object-oriented programming) on the part of the read-
er. Throughout, we will use the Bernoulli distribution as a
didactic example, but JAGS can accommodate all other types
of probability distributions (continuous and discrete, univari-
ate and multivariate) with little extra effort. In the second part
of the article, we present a module implementing a distribution
of particular interest to the cognitive science community. The
JAGS Wiener module (JWM) adds the first-passage time
distribution of a drift diffusion process to JAGS. We also
provide two sanity checks of the JWM: an extensive simula-
tion study, showing good recovery, and an application to a
previously analyzed data set, showing parallel results.

Steps to extending JAGS with a new module

In this section, we detail the steps required to write a new
module for JAGS. JAGS modules are library files that are
located in the /modules directory of JAGS. These modules
can be loaded during JAGS runtime in order to extend its
functionality with more functions and distributions, or even
sampling algorithms or monitors.

1 Another desirable feature of JAGS is that it is truly free software, as it
is open-source and released under a free, copyleft license—it is “free-
as-in-speech” as opposed to merely “free-as-in-beer.” The advantages
of open-source scientific software are many: Not only does it enable
researchers to check underlying functions for accuracy and appropri-
ateness, but it also contributes to the exchange of information and
reproducibility, even across platforms. In the particular case of JAGS,
its modular and open-source nature enables the potential formation of a
contributor community not unlike that of the R system.
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Modules are written in C++. In order to write a custom
module that provides a new distribution, we need to define
two new C++ classes: one for the module itself, and one for
the distribution that we will use. Throughout, we will display
much of the required code, as well as templates for files used
in building and compiling. The code can be copied from this
text, or it can be found in our SourceForge archive (and can
be used as a template for new modules). The Appendix
contains a quick reference table of the required steps.

We use the Bernoulli distribution as an example to illus-
trate the basics of extending JAGS because the functions that
define this distribution are relatively easy to write, without
the need for calling advanced functions from extra libraries.2

Using the naming scheme3 from JAGS, we will name our
module class BERNModule and the distribution class DBern.

Step 1: Defining a module class

We start by creating a specific module class that is a child of
the base Module class, which JAGS provides. To make a
new module class, create a new file like the one displayed in
Box 1—this is our Bernoulli.cc module file. Place it in
src/, a subfolder of your working directory for this project.

Box 1 The Bernoulli.cc module definition file

In the first lines, we reference two header files containing
premade functions that we will use. Apart from the JAGS
header file Module.h (which is available through JAGS),
we will include the Bernoulli distribution class file, which
we will create at a later point.

The new functions and classes that we create need to be
defined within a single namespace—a named environment
that is used to group programmatic entities that are frequently
used together. The third line of Box 1 names the namespace.

Then, we define the module class, which we will call
BERNModule. BERNModule is a subclass of Module with
public inheritance, and needs to define two functions—both
are required.

Constructor and destructor for the BERNModule class In
Box 1, the constructor function BERNModule() is called
whenever an object of our Bernoulli class is instantiated.

The constructor function BERNModule() needs to do
two things. First, it needs to instantiate a generic module by
calling the constructor function of the parent Module class.
It calls that generic constructor with a single argument: the
name of the module (as a string). Second, our new module’s
constructor needs to call the insert function with, as input,
a new instance of the class describing the new distribution (in
our case, DBern, which is detailed below).

The destructor function ~BERNModule() needs to re-
move the instance. To do so, we use a for loop over all
instances of the module.4

The last line of Box 1 actually calls the new module’s
constructor function and instantiates one BERNModule.

Themodule classBERNModule is nowcomplete. The second
step in creating the JAGS module is to define the DBern scalar
distribution, which is inserted with the constructor call in Box 1.

Step 2: Defining a scalar distribution

A new scalar distribution for JAGS is implemented through a
new C++ class. The new class will need, in addition to its own
constructor function, the following four specific functions:

& logDensity, a function to calculate and return the log-
density;

& randomSample, a function to draw and return random
samples;

& typicalValue, a function to return typical values; and
& checkParameterValue, a function to check wheth-

er the given parameter values are in the allowed param-
eter space

2 Note, however, that JAGS includes a version of R’s math library,
JRmath.h, providing many basic functions that can be useful in
writing extensions (e.g., a function for the normal density and distribu-
tion). It is also possible to link to third-party libraries such as the
LAPACK and BLAS libraries, for optimized performance.
3 In the JAGS naming scheme, a new distribution is given a short name (in
our case, Bern) and a long name (in our case, Bernoulli). Module classes
will be called <SHORTNAME>Module, distribution classes will be called
D<shortname>, and the module namespace will be called
<longname>. Naming schemes for filenames are given in the Appendix.

4 In the present example, it is not strictly required to loop over many
instances, because the constructor function only ever makes a single instance,
but in general it is possible for a module to instantiate more than one
distribution on loading, so we write a more general destructor function that
will remove all instantiated objects on unloading. Our current code will
always loop over only one element, the instantiated DBern object.

16 Behav Res (2014) 46:15–28



We now create two new files in a subdirectory called
src/distributions/. Our files will be src/
distributions/DBern.h, which will contain the class
prototype, and src/distributions/DBern.cc, which
will contain the actual computational implementation.

DBern.h Box 2 contains our file src/distributions/
DBern.h. Near the top of the code, we include the (JAGS)
parent class ScalarDist in order to be able to use it as a base
class and inherit from it. Since we will be adding this to the
namespace of our newmodule, we use the same name for it here
as in Box 1. What follows in Box 2 are the prototypes of (1) the
constructor function (which has the same name as the class), (2)
the four required functions (which will be identical for other
scalar distributions5), and (3) the function isDiscrete
Valued, which will tell JAGS that the function has a discrete
domain.

Box 2 The Bernoulli scalar distribution class header file
DBern.h

The logDensity function takes five input arguments:

1. The first argument (double x) contains the data point
at which the function is to be calculated.

2. The second argument, of the JAGS-specific type
PDFType (defined in Distribution.h, which is a
parent of ScalarDist.h), defines different ways of
calculating the log density. During JAGS runtime,
depending on how the node is used, this argument can take
different values. The possible values are PDF_FULL (for
when the node is used for the full evaluation of the likeli-
hood, when the parameters and sampled values are not

constant), PDF_PRIOR (for when parameters are constant,
so that terms that depend on them can be omitted from the
calculations), and PDF_LIKELIHOOD (used when the
sampled value is constant, so that terms that depend on it
can be omitted from the calculations). The PDFType can
simply be ignored (as it is in our example).

3. The third argument (std::vector<double const
*> const &parameters) is a reference to a vector that
contains pointers for the parameters of the distribution. In
our case, the vector consists of a pointer to pi (the prob-
ability parameter of the Bernoulli distribution; see Eq. 1).

4. The final two arguments (double const *lower
and double const *upper) are pointers to the
lower and upper boundaries of the distribution, in the case
of truncated sampling (see lib/graph/Scalar
StochasticNode.cc in the JAGS code to find the call
to the logDensity function). In our example, these are
not used, and these arguments are ignored.

The arguments used in the other functions have similar
definitions. One final input argument, which appears only
in the randomSample function, is the JAGS-specific
RNG type argument (RNG *rng). It points to an rng
object that provides the following functions to generate
random numbers:

rng- > uniform()
rng- > exponential()
rng- > normal()

These random-number-generating functions can be used
to drive samplers for any distribution.

DBern.cc Now we need to implement the four functions
and the constructor function prototyped in Box 2. The dis-
tribution function of a Bernoulli distributed random variable
X, used as the basis for the computations, is in Eq. 1.

P X ¼ 0ð Þ ¼ 1−πð Þ
P X ¼ 1ð Þ ¼ π

ð1Þ

Note that, although these four functions need to be present
in the code, not all are strictly speaking required to run an
analysis. If drawing random samples from the distribution is
not a functionality your analyses require, it is possible to let
randomSample return JAGS_NAN. This will cause JAGS
to throw an error if a model is defined that requires random
sampling from the new distribution, but it does not affect
using the new node as a likelihood. Similarly, if typical
Value is not implemented, JAGS will not run a sampling
process if no starting values are supplied, but will work
otherwise. The checkParameterValue function is a pre-
requisite for logDensity, however.

Furthermore, as the Bernoulli distribution is a discrete-valued
distribution, we redefine the function isDiscreteValued

5 These functions are implemented as virtual in the base class and
need to be defined in the child class, with the same name and arguments.
It is possible to introduce new functions here.
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and let it return true (implementation of that particular func-
tion is not necessary for continuous distributions: it will be
inherited from the base class and return false by default).

The implementations of the required functions are provid-
ed, with comments, in Boxes 3, 4, and 5.

Box 3 The DBern.cc file. Note that we need to include
rng/RNG.h and util/nainf.h from the JAGS library,
to provide the RNG struct and the JAGS_* constants, as
well as the jags_* functions. cmath.h is needed for stan-
dard math operations.

Box 4 Functions from the DBern.cc file

Box 5 Further functions from the DBern.cc file

Constructor and destructor for the DBern class Finally,
we need to set up constructor and destructor functions for our
ScalarDist class. The constructor function calls the con-
structor for ScalarDist with three input arguments (as
defined in the JAGS header file distribution/Scalar
Dist.h). The first input argument is std::string
const &name and is used to give the distribution node
a name, which can later be used in the JAGS model file
to define a node with this distribution (in this example,
the distribution node will be called “dbern2”). The second
input argument of the constructor is unsigned int
npar and is used to define the number of arguments that
the new distribution node can take (that is one parameter,
the probability π, for this example). The third argument of
the constructor is Support support, a JAGS-specific
variable that defines the support of our new distribution.
In our case, support is DIST_PROPORTION, indicat-
ing a distribution that spans from 0 to 1. Other valid
options for this argument are DIST_POSITIVE (for a
distribution that has support only on the positive real half-
line), DIST_UNBOUNDED (for a distribution that spans
the entire real line), and DIST_SPECIAL (for other
domains).

Step 3: Building the module

To configure and build our module, we used the GNU
Autotools and libtool6 (these are the same tools used in
building the JAGS project), according to the steps
below.

We will give a brief overview, together with all the
information necessary to organize the build process of
the module described in this article. However, these
building methods are not guaranteed to stay the same
over time,7 so the build process may be slightly differ-
ent on newer machines and operating systems. However,
build processes are central to software development and
are typically very well-documented for new architectures
and operating systems.

Step 3.1: Creating a file structure First, make sure that a
project directory exists that contains within it a subdirectory

6 GNU Autotools and libtool are well-documented, with manuals avail-
able via www.gnu.org/software/autoconf/, www.gnu.org/software/
automake/, and www.gnu.org/software/libtool/.
7 Fortunately, major changes to these kinds of tools are very rare; it is in
the interest of the developers to keep this process simple and relatively
stable over time.
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called src/, and that all of the source files (which
contain the C++ code for the module) are present in
the src/ subdirectory. For the given example, this
would be

& the module main file src/Bernoulli.cc, and
& in the src/distributions/ sub-subdirectory, the

distribution class files DBern.h and DBern.cc

Now create one configure.ac file in the main
directory of the project and one Makefile.am in every
directory of the project (including all subdirectories). The
configure.ac file will contain information on how to
correctly configure the project. The Makefile.am files
will contain the necessary arguments for building, including
libraries to link to and the paths to the include directories (and
more).

Since the newly created module uses functions from the
JAGS library, it needs to be linked to the appropriate librar-
ies, and JAGS’s include files need to be available (i.e., JAGS
needs to be installed properly).

Step 3.2: Creating the configure.ac file Boxes 6 and 7
together show the configure.ac file. All of the func-
tions used in this file are documented in the documenta-
tion of Autoconf (see note 6). This file contains instruc-
tions on how to prepare the module for building (e.g.,
which compiler to use). Much in the file can remain
unchanged.

Box 6 The first part of the configure.ac file (file con-
tinues in Box 7). Lines beginning with dnl (“delete to new
line”) denote comments.

Box 7 The second part of the configure.ac file (contin-
ued from Box 6)

The AC_INIT directive takes as its first argument
the package name, as the second argument the package
version, as the third argument a contact e-mail address
(for bug reports), and as the fourth argument the name
for the .tar file. JAGS_MAJOR and JAGS_MINOR
should be edited to the current JAGS version that
is being used. AC_CONFIG_SRCDIR should contain
a path to any file of the package. The AC_
CONFIG_FILES directive at the end tells the configu-
ration process where to create Makefiles, using the
Makefile.am files as a template.8 The libltdl
directory and its Makefile.am will be created auto-
matically. If one follows all directions given here, noth-
ing else has to be changed.

Step 3.3: Creating several Makefile.am files Box 8 shows
the Makefile.am file in the main directory. The configu-
ration process will use a subdirectory called m4/, which
needs to be created manually. The file also needs to reference
the building subdirectories: the src/ directory containing
the actual source, and a libtool/ directory, which will be
created automatically.

Box 8 The Makefile.am file

Box 9 shows the Makefile.am file in the src/ direc-
tory. It contains the instructions to produce the module
library.

8 The Makefiles files are system-specific and necessary for the build
process, whereas the Makefile.am files are system-independent.
They contain directives to generate appropriate Makefiles for the
system to build the source.
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Box 9 The src/Makefile.am file

The first directive, SUBDIRS, points to the subdirectories
to be used; for JAGS modules, this will typically be
distributions. The next directive defines the
JAGSMODULE libtool library to be created. The library
file will be named <longname>.la (e.g., Bernoulli.la).
The next directive defines where to find the library source
code. The following directive gives the C++ compiler
additional options. The -I path option passes to the
compiler the path of JAGS’s include directory (a
subdirectory of the system’s include path indicated by
$(includedir)).

The next set of directives tell the compiler which object
code (i.e., compiled code) should be linked to the libraries.
For the Bernoulli module, this is the object code for the
Bernoulli distribution and the JAGS library. The -ljags
argument searches for the JAGS library in the system library
directory (note that since Windows organizes its libraries
differently, and the JAGS library will be in a slightly differ-
ent location, we need to add a Windows-specific part here).
Had we used additional external libraries, we could add these
here as well. For example, we could link to the JRmath.h
library, with -ljrmath (and -ljrmath-0 in theWindows
part).

Box 10 shows the Makefile.am file of the
src/distributions/ directory. It contains the instruc-
tions to build the Bernoulli distribution code, which will then
be included in the package library. The sublibrary
distributions/Bernoullidist.la is named on
line 1 of Box 10. This name must be matched in the
src/Makefile.am (line 9 of Box 9). In Box 10, the
directive noinst_LTLIBRARIESwill cause the sublibrary
to be built, but not installed (i.e., the code will be compiled but
not copied to a system location). The sublibrary will be
incorporated in the module library by src/Makefile.am.
As before, the Bernoullidist_la_CPPFLAGS directive
takes arguments to be passed to the compiler. In this case, it
passes the include directories where the header files for the
code can be found.

Box 10 The src/distributions/Makefile.am file

With all of the files organized as described in this section,
we can now proceed to configure and build the module using
the steps below. We first provide the steps for building on a
Unix-like (i.e., Mac or Linux) environment, in which build-
ing is much easier than under Windows systems. Unfortu-
nately, building on Windows systems is a tedious and in-
volved affair. In particular, the autoreconf -fvi com-
mand on a Windows system is not possible with standard
emulators like MinGW. It is, however, possible to perform
the first two steps below on a Mac/Linux system, then to
create a source .tar file, copy and extract that onto a Win-
dows machine, and use theMinGWenvironment with msys to
configure and build the source. We will outline the full build-
ing process for Mac/Linux systems, and then describe the
steps needed to compile for Windows systems.

Step 3.4a: Building the module (Mac/Linux) To proceed in
a Mac/Linux system, follow these steps:

& autoreconf -fvi: This command will generate a
number of auxiliary files that are necessary for the con-
figuring and building process.

& ./configure: This command configures the source
package for building on your system.

& make: This command compiles the source code into
system-specific object code.

& make install: This command creates local copies of
the object code, placing it in the correct locations in the file
system (this step typically requires administrator/superuser
privileges). In our case, this commandwill copy themodule
library to an appropriate location in the systemwhere JAGS
can find and load it.Unfortunately, this command does not
work under Windows. It is possible, however, to create
installers for Windows machines that include precompiled
binaries and to copy them to the correct locations. One
easy-to-use third-party tool to create such installers is NSIS
(http://nsis.sourceforge.net).9 Alternatively, this can be
done manually by copying the libraries to the JAGS direc-
tory that contains the other module libraries.

9 Unfortunately, this command does not work under Windows. It is
possible, however, to create installers for Windows machines that
include precompiled binaries and to copy them to the correct locations.
One easy-to-use third-party tool to create such installers is NSIS
(http://nsis.sourceforge.net).
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Additionally, after running the first two commands (the
configuration process), one can easily create source .tar
files with make dist-gzip or make dist-bzip2 (or
whichever format one prefers and is supported by the
Makefile routines).

Step 3.4b: Building the module (Windows) Building under
Windows follows a similar process, with some added steps.
First, create the Windows libraries. We start by installing
MinGW (the MinGW installer includes msys) and the TDM-
GCC Compiler Suite, which can be obtained from www.
mingw.org and http://tdm-gcc.tdragon.net.10 In the rest of
this paragraph, it will be assumed that MinGW and TDM-
GCC are installed in their default directories.

Second, delete all *.dll.a files in the TDM-GCC di-
rectory, to force the compiler to link to the static libraries (the
*.dll files). This is necessary to build libraries that will
work on systems that do not have TDM-GCC.

Third, change the path in the file C:\mingw\msys\
1.0\etc.\fstab from C:\mingw /mingw to
C:\MinGW64 /mingw.11 This is necessary in order to
use the TDM-GCC compilers instead of the standard
MinGW compilers.

Now, the actual configuration and building process can
commence. The module needs to locate the JAGS include
files and the JAGS libraries. Because Windows has no stan-
dard path in which to look for these files, this needs to be
done manually. Edit the code in Box 11 to reflect the paths to
the JAGS libraries (with the -L option) and the JAGS
include files (with the -I option). The code is given for a
standard installation of JAGS 3.3.0.

Box 11 Building the source code under Windows. Note that if
you build libraries for both 32-bit and 64-bit systems, you need
to run make clean between the two building processes.

Start msys (the MinGW shell), extract the source .tar file
in any directory, navigate to that directory by using the cd

command, and run the appropriate commands given in Box 11.
Executing these commands will create a number of files in the
src/.libs/ directory. Now copy those files that are named
after your module and end in .dll, .dll.a, and .la to
your JAGS modules directory (where all of the other mod-
ule libraries are located). You can also use these files to
create an installer (e.g., with NSIS; see note 9).

After installing the new module, JAGS will recognize a
new stochastic node, to be used as follows: x ~
dbern2(pi), where the string “dbern2” is defined in Box
3 (line 23) and its parameter is interpreted through line 13.

Extending the module with logical nodes

Adding a custom distribution is only one of several possible
extensions that a JAGS module can provide. One other pos-
sible extension is the creation of logical nodes (i.e., determin-
istic functions, rather than stochastic ones; logical nodes are
useful for transforming variables within a JAGS model file,
and are always preceded by an assignment operator <−).

Here we demonstrate how to supplement our Module
example with a logical node that calculates the Bernoulli
log density at a given data point for a given parameter
set.12 To do so, we will write a scalar function. Much like
the scalar distribution, the ScalarFunction class re-
quires the implementation of two functions:

& evaluate: the function that does the calculations and
returns the result

& checkParameterValue: a function to check wheth-
er the parameter values are in the domain of the function

In the src/ directory of our module, add a subdirectory
functions/, and in it the two files LogBernFun.h and
LogBernFun.cc. Boxes 12 and 13 show examples of
such files.

Box 12 The src/functions/LogBernFun.h file

10 Note that when compiling a module, it is necessary to use the same
tool chain that was used to compile JAGS, which at the time of writing
means TDM-GCC v4.6.1. Newer versions of TDM-GCC will probably
cause errors (and note also that older versions of TDM-GCC will by
default update themselves during installation unless the user unchecks
that option). For future releases of JAGS, check the JAGS manuals for
information on which compiler version was used.
11 These are the default paths. They might be different, depending on
where the software was installed.

12 Of course, it is possible to write a module that contains only a logical
node, without tacking it on to another module.
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Box 13 The src/functions/LogBernFun.cc file

After the function class is ready, we need to add it to
the Bernoulli.cc module by loading it with the
constructor and deleting it with the destructor (as in
Box 1). See Box 14 for the lines to add.

Box 14 The code to add to the src/Bernoulli.cc file

Finally, add an appropriate Makefile.am to the
newly created src/functions/ directory. In src/
functions/Makefile.am, the sublibrary is named
(here, Bernoullifunc.la). Also add the name of that
sublibrary to src/Makefile.am like this: bernoulli_
la_LIBADD += functions/Bernoulifunc.la (in
order to incorporate the sublibrary in the common Bernoulli
library). Additionally, add the name of the subdirectory
(/functions) to the SUBDIRS directive in the first line
of src/Makefile.am, and add the appropriate directives
to generate the Makefile file in the configure.ac file.
The required Makefile.am will be similar to that in Box
10, with only small edits (replacing the file names and the
name for the sublibrary in the first line and in the following
lines, where it is part of the directive). In the configure.ac

file, merely add a line to the last directive to tell Autoconf to
create a Makefile in the src/functions/ directory.

Now, once the module is installed, JAGS will recognize a
new logical node that can be used as follows: p <−
logbern(x,pi), where the name of the node is defined
in Box 13 (line 18), and the order of the parameters is defined
in lines 10 and 11. This line, when used in a JAGSmodel file,
will store in the variable p the log likelihood under a
Bernoulli distribution of data point x given parameter pi.
Storing the log likelihood at every iteration of the Gibbs
sampler can be useful for convergence checks or to compute
model fit statistics in the Bayesian framework.

Note that still more ways exist to extend JAGS. One can,
for example, write custom sampling algorithms, or multivar-
iate distributions—fully describing the installation procedure
of every possible extension would be beyond the scope of a
single article. However, the open-source nature of JAGS
allows enterprising researchers to study the implementation
of various components of the program13 (we recommend the
multivariate normal distribution, DMNorm.cc, as an example
of a multivariate distribution, and the code for the slice sam-
pler, Slicer.cc, as a sampler example). The generic meth-
od of creating modules presented here will work for more
sophisticated components as well. The main difference be-
tween the workflow outlined here and that for a new compo-
nent will be in the time that needs to be invested in studying
the JAGS framework for the appropriate function class.

The next section focuses on the installation—from an
end-user point of view—of a custom stochastic node that
we believe to be of use for the cognitive science community.

The JAGS Wiener module (JWM)

Few cognitive models have had as much success as the
diffusion model for two-choice response times (see
Wagenmakers, 2009, for a review). Recently, research actu-
ally applying the diffusion model has greatly increased, since
practical, user-friendly software has become available
(Vandekerckhove & Tuerlinckx, 2007; Voss & Voss, 2007;
Wagenmakers, van der Maas, & Grasman, 2007; Wiecki,
Sofer, & Frank, 2011). The extension into hierarchical
Bayesian modeling provides the most flexible modeling
framework yet (Vandekerckhove, Tuerlinckx, & Lee,
2011). However, flexible implementations of the hierarchical
diffusion model (HDM) are currently limited to WinBUGS
(Lunn, Thomas, Best, & Spiegelhalter, 2000), which is not
truly free software (although it is gratis14) and only runs

13 In fact, studying the source code is how the present methods came
about.
14 However, an open-source port of WinBUGS does exist: OpenBUGS
(www.openbugs.info).

22 Behav Res (2014) 46:15–28

http://www.openbugs.info/


natively on Windows systems. The present article hence
addresses a collateral need by providing an HDM implemen-
tation in an open-source, platform-independent framework.

The JWM is an extension for JAGS and is designed to
integrate seamlessly with the existing JAGS platform. It ex-
tends JAGS to recognize dwiener, the first-passage time
density of a drift diffusion process, as a new stochastic node
with four parameters: the boundary separation α, the
nondecision time τ, the initial bias β, and the drift rate δ. The
psychological interpretations of the four Wiener distribution
parameters are summarized in Table 1, but for a more detailed
description of the assumptions of the Wiener diffusion model,
we refer the reader to Vandekerckhove et al. (2011).

Installing and using the module is straightforward, as we
describe below.

Installation

In order to install and run the JWM, a recent version of JAGS
is required.15 JAGS can be freely downloaded from http://
mcmc-jags.sourceforge.net/, but is also available as a pack-
age for various Linux distributions that use the RPM Pack-
age Manager, as well as Debian and Ubuntu. For the pur-
poses of the installation procedure, we will assume that a
recent version of JAGS is already available.

Because JAGS is designed with the capacity for extension
in mind and is capable of dynamically loading libraries,
installing a module does not compromise the regular func-
tioning of JAGS. To activate the extensions, modules have to
be loaded explicitly by JAGS. To allow the program to locate
the new libraries, they need to be installed according to the
instructions below.

We have split up the installation instructions between a
procedure for Windows systems and one for Linux and Mac
systems.

Windows systems We provide precompiled libraries for Win-
dows that can be readily downloaded from the SourceForge

repository. The installation proceeds according to the follow-
ing steps:

1. Obtain the Windows installer from SourceForge, at
https://sourceforge.net/projects/jags-wiener/files.

2. Execute the installer, and make sure to save the libraries
at the correct position so that JAGS will be able to find
the module. The correct location will be C:\Program
Files\JAGS\JAGS-3.3.0\i386\modules\ (for
JAGS Version 3.3.0; the version number in the path
changes for older or newer releases) on 32-bit
systems, and C:\Program Files\JAGS\JAGS-
3.3.0\x64\modules\ (for JAGS Version 3.3.0) on
64-bit systems (possibly replacing the JAGS root di-
rectory with its actual installation directory). The in-
staller just needs the JAGS root directory to install the
libraries at the correct position.

Linux and Mac systems, compiling from source The general
way to install our module on Linux and Mac systems is to
compile the source for your system and then to install them.
For this operation, some general knowledge of GNU Tools
and using a console interface (i.e., the terminal) is required.
The following instructions are Linux- and Mac-specific. The
installation instructions will assume that JAGS is already
installed, so that it is possible to link correctly to the JAGS
library. (For those interested in compiling under Windows,
please note that the MinGW environment with mysys needs
to be installed, as well as the TDM-GCC compiler suite.
Please see the previous instructions in the Step 3: Building
the Module subsection and the README.win file, present in
the win source directory, for further instructions on compil-
ing under Windows.)

1. Get the JWM tar archive, containing the source code,
from SourceForge at https://sourceforge.net/projects/
jags-wiener/files, and extract it.16

15 The module is written and tested using JAGS version 3.3.0, but it
works for versions ≥3.0.0. Note that our compiled binaries may not be
compatible with future versions of JAGS.

16 Instead of the tar archive, you can also get the current developers’
version from the Web-based mercurial repository, hosted on
SourceForge at https://sourceforge.net/projects/jags-wiener/code. For
normal use, it is generally recommended to use the stable release—that
is, the .tar file.

Table 1 The four main parameters of the Wiener diffusion model, with their substantive interpretations

Symbol Parameter Interpretation

α Boundary separation Speed–accuracy trade-off (high α means high accuracy)

β Initial bias Bias for either response (β > 0.5 means bias toward response “A”)

δ Drift rate Quality of the stimulus (close to 0 means ambiguous stimulus)

τ Nondecision time Motor response time, encoding time (high means slow encoding, execution)

From the unpublished dissertation Extensions and applications of the diffusion model for two-choice response times, by J. Vandekerckhove, 2009,
University of Leuven. Copyright 2009 by Joachim Vandekerckhove and Faculty of Psychology and Educational Sciences, University of Leuven.
Reprinted with permission
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2. Use cd to change to the directory containing the source
code.

3. If you are compiling the source from a cloned repository,
run autoreconf -fvi before configuring (not nec-
essary if you use the stable .tar file release).

4. Configure and compile the source code for your sys-
tem with the following commands in a terminal win-
dow: ./configure && make. When this is done,
install the libraries on your system with the following
command, which usually requires root privileges:
sudo make install.

The JWM should now be installed on your system.

Ubuntu Linux, with the Advanced Packaging Tool If you use
Ubuntu Linux, you can alternatively install the JWM with
the Advanced Packaging Tool (APT). The authors maintain
an online repository (a personal package archive, or PPA,
called cidlab) from which the module can be downloaded.
Adding the PPA, updating APT, and installing the module
are achieved with this code:

sudo apt-add-repository ppa:cidlab/jwm
sudo apt-get update
sudo apt-get install jags-wiener-module

Testing the installation

The successful installation can be confirmed by loading the
Wiener module in JAGS. In order to do that, bring up a
terminal or command window and start JAGS. Then type
the following at the JAGS interface:

$ load wiener
Loading module: wiener: ok

Alternatively, R users can use the rjags package to
interface with JAGS. Loading the module in R works
like this:

> library(rjags)
Loading required package: coda
Loading required package: lattice
linking to JAGS 3.3.0
module basemod loaded
module bugs loaded
> load.module(“wiener”)
module wiener loaded

We have also made available a version of the
MATJAGS MATLAB-to-JAGS interface that loads extra
modules, as specified. The MATJAGS interface is a
single MATLAB file that can be downloaded from the
SourceForge repository. Documentation is provided
within that file.

Using the JAGS Wiener module

With the JWM installed, the dwiener stochastic node is
now available for use in a model definition. To define that a
certain node is distributed according to a Wiener distribution
with the four parameters given in Table 1, the following
stochastic node can be used:

x ~ dwiener(alpha,tau,beta,delta)

This syntax is almost identical to that used in the
wiener.odc extension to WinBUGS, as presented in the
supplemental material to Vandekerckhove et al. (2011).

The main differences to that implementation are that
(a) the diffusion coefficient s is set to 1 in our JAGS
implementation (rather than 0.1 in the WinBUGS one),
and (b) the JAGS implementation takes as a third input
argument the relative bias parameter β (rather than the
absolute starting point ζ0 = αβ in the WinBUGS ver-
sion). Setting the diffusion coefficient s to 1 instead of
0.1 is computationally more efficient and further yields
a more natural interpretation of the drift rate parameter
(because it now has a range similar to that of a standard
normally distributed variate). To convert to a different
evidence scale (i.e., a different value for s), multiply the
obtained17 drift rate and boundary separation parameters
by s. We use the β parameter instead of the ζ0 starting
point primarily because β has an interpretation on an
absolute scale (the unit scale), whereas ζ0 can only be
interpreted relative to the boundary separation α.

Some of the parameters have limited domains: α, τ > 0
and 0 < β < 1. Note that the distribution is implemented
as a univariate distribution. To use the distribution, choice
response time data should be coded in such a way that
error response times (or whichever response type is asso-
ciated with the lower boundary) are given negative values.
Specifically,

x ¼ RT if correct
−RT if error

�

For a worked example on how the module can be used, see
the examples directory in the JWM repository on SourceForge,
or download a zip file of the example from SourceForge at
https://sourceforge.net/projects/jags-wiener/files.

Testing of the JAGS Wiener module

In this section, we report results of some of the extensive
testing of our JAGS Wiener module, which we created and
built according to the instructions above. The first part

17 Alternatively, s can be coded directly in the BUGS file, using the stochas-
tic node as follows: y ~ dwiener(alpha/s,tau,beta,delta/s).
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describes results from a numerical simulation experiment,
whereas the second part describes an application to a bench-
mark data set.

Parameter recovery simulations

To affirm the accuracy of our implementation of the
Wiener distribution, we ran a comprehensive numerical
experiment. Using the DMAT toolbox (Vandekerckhove
& Tuerlinckx, 2008), we generated data from known
parameter sets and then used JAGS to recover the pa-
rameters. In all cases, we generated 1,000 data sets with
three conditions, which differed in their drift rates only.
The three drift rates were always (−3.0, 1.0, 4.0). The
boundary separation was either 0.6, 1.2, or 3.0, the bias
was either 0.3, 0.5, or 0.7, and the nondecision time was
always 0.4 s, yielding a total of nine distinct parameter
sets. Using these parameters, we generated data sets with
200 data points per condition. We then used JAGS to
estimate the parameters. Our estimate was the posterior
mean obtained after running four chains for 2,000 itera-
tions and discarding the first 1,000 as burn-in and using
no thinning, for a total of 4,000 samples.

In only one case (0.01 %) was the bR < 1.05 criterion for
convergence (see Gelman, Carlin, Stern, & Rubin, 2004)
violated. This case was discarded. In general, recovery was

good. Figure 1 shows the distributions of each parameter’s
estimates by parameter set. Though some parameters in some
conditions—particularly the drift rate parameter—show
some variability, no systematic biases are evident for any
parameter.

Benchmark data

Data set and theoretical framework To further illustrate the
functionality and utility of our module, we applied a
Bayesian hierarchical diffusion model analysis to bench-
mark data from Vandekerckhove, Panis, and Wagemans
(2007, data used with permission). The data came from
nine participants, who performed a visual detection task
(i.e., they reported whether or not a change occurred in a
figure, in a temporal two-alternative forced choice task).
The difficulty of this task was manipulated in a 2 × 2
factorial design, resulting in four experimental conditions
plus one control condition (in which no change in the
figure occurred). The dependent variables X (binary: 1 if
the correct response was given, 0 otherwise) and T (the
response time) were recoded into a single variable Y =
(2X − 1)T, preserving all the information in the bivariate
data. For a more detailed description on the data and the
research question, we refer the reader to Vandekerckhove
et al. (2007).
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Fig. 1 Results of the parameter recovery simulations. In all panels, the
nine levels refer to the nine different parameter sets. The true parameter
values are given in the text. Values are recovered as posterior means, and
the plots display the population of parameter sets over 1,000 simulated data
sets. Circles indicate the mean recovered values, whiskers span 1.5 times

the interquartile range, and the edges of the boxes are the 25th and 75th
percentiles. The results indicate very good recovery, with slightly more
variability in the drift rate estimates than in the other parameters, especially
in the conditions with low boundary separations
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Vandekerckhove et al. (2011) have previously used the
same data to show the advantages of a hierarchical diffusion
model in a Bayesian framework. Here the focus lay on dem-
onstrating how we used the same theoretical framework with
the presented, open-source software. Moreover, we did our
analysis with two different models that differed in the exact
specification of the hierarchical structure. For a more detailed
description of the model framework, see Vandekerckhove
et al. (2011).

Model definitions Following Vandekerckhove et al.
(2011), we assumed an unbiased diffusion process and
set β = .5 accordingly. We further allowed the boundary
separation parameter α to differ between persons as a
random effect. In other words, every person p was
allowed to have their own boundary separation parame-
ter α(p), which was a drawn from a joint population
distribution: α(p) ∼ N(μα, σ

2
α).

The nondecision time τ(pij) was also allowed to differ
between persons p, conditions i, and trials j. It was a random
variable with mean θ(p) and variance χ

2
(p), both of which were

themselves seen as random variables, differing between per-
sons, with respective population means μχ and μθ and vari-
ances σ2χ and σ

2
θ: τ(pij) ∼ N(θ(p), χ

2
(p)) and θ(p) ∼ N(μθ, σ

2
θ), and

χ(p) ∼ N(μχ, σ
2
χ).
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Fig. 3 Examples of a good and a bad chain. The upper left panel shows the deviance chain, as it was sampled. The lower left panel shows the
deviance chain after thinning and burning. The two panels on the right show the autocorrelation plots before and after thinning, respectively

Fig. 2 Graphical model for the M2 model. The nodes that are indicated
with stars and connected with dashed arrows—μχ, σχ, μη, and ση—are set
to fixed values in theM1 model
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In the first model, M1, we did not estimate μχ and σχ, but
set them to the fixed values μχ = .35 and σχ = .125, casting
these as fixed rather than random effects.18

The drift rate parameter δ(pij) was also allowed to differ
between trials, conditions, and persons. Moreover, it was cast
as a random variable with a condition-by-person-specific mean
ν(pi) and person-specific variance η

2
(p). The mean ν(pi) was itself

a random parameter with mean μν(i) and variance σ2ν(i), which
both differed between conditions as fixed effects. The variance
η2(p) differed between persons and was a random variable with
the population mean μη and variance ση. In the M1 model, we
did not estimate μη and ση, but set them to 3.5 and 3.5,
respectively.

The second model (M2) differed from the first (M1) only in
that μχ, σχ, μη, and ση were free parameters whose values
were estimated by JAGS. Figure 2 shows a graphical model
representation of the second model. A graphical representa-
tion of the first model would look identical, but for the
removal of the four now-fixed nodes.
Results We ran three chains with 50,000 iterations each for
M1, and three chains with 250,000 iterations each forM2. For

no parameters did the potential scale reduction factor bR
exceed 1.02 in M1. In M2, μη and ση exceeded acceptable
values, with 1.8 and 2.88, respectively, whereas all other

parameters and the deviance (i.e., the log posterior) had bR
values of approximately 1.

The Monte Carlo chains of M1 showed high autocorrela-
tion and poor mixing, prompting us to subsample the chains
by a factor of 1,000 in addition to using a burn-in period of
1,000, resulting in 150 independent samples. The overall
shape of the thinned chains was satisfactory, on the basis of
visual examination. Figure 3 shows the deviance chain of the
easy model before and after burning and thinning, with the
chain after burning and thinning showing good mixing.

Similar results held for the more complex model M2: High
autocorrelation and unconverged chains at the beginning were
removed by burning the chains with 20,000 and thinning them
by 2,000, resulting in 348 independent samples. Figure 4
shows a typical chain of M2. Two parameters showed poor
mixing even after burning and thinning: μη and ση. However,
the total deviance of the model did not show convergence
issues, suggesting that these two parameters converged poorly
due to the modest impact that they had on the model’s fit to the
data (i.e., they were poorly identified by the data).

Finally, Table 2 shows the summary statistics of the drift
rate population distributions for theM1 andM2 models. As the
table shows, the parameters differed between conditions. The
outcome of our analysis with JAGS did not differ substantially
from the results reported by Vandekerckhove et al. (2011).

Summary

JAGS is an open-source software package for the analysis of
graphical models that is written with extensibility in mind.
Additionally, open-source software is advantageous for aca-
demic research because of its permanency and accessibility.
We provide step-by-step instructions on how to implement
custom distributions and logical nodes in JAGS. It is hoped
that our documenting the process of extending JAGS will
contribute to the formation of a collaborative community that
will extend the usefulness of JAGS even more.

18 The theoretical difference between fixed and random effects is subtle.
We refer to De Boeck (2008) and Gelman and Hill (2007) as good
starting points regarding the issue. For our purposes, it suffices to know
that, whereas random effects are particularly useful as generalization
tools, they occasionally carry an additional computational burden that
may not be warranted if the particular parameter is not of core interest.
This is why we provide an example for each scenario.
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Fig. 4 Trace and autocorrelation plots for the first drift rate mean of the M2 model

Table 2 Estimates (posterior means) of the five population means (μ)
and standard deviations (σ) of the drift rate parameters for the two models

Type Quality M1 M2

μν(i) σν(i) μν(i) σν(i)

ν1 1 0 1.0078 0.3508 0.9442 0.3987

ν2 0 0 −0.4347 0.5615 −0.3925 0.5510

ν3 1 1 3.0505 0.5353 2.8907 0.5535

ν4 0 1 0.4699 0.4667 0.4099 0.4304

ν5 3.6166 0.3698 3.3758 0.4099
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We have implemented the first-passage time distribution
of a Wiener diffusion model as a worked example, and
provide the resulting module as a freely downloadable
package.
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Appendix: JAGS custom distribution quick reference table

Step Files involved Contains

1. Define a module
class

src/<longname>.cc Constructor and
destructor

2. Define scalar
distribution

src/distributions/
D<shortname>.h

src/distributions/
D<shortname>.cc

Function prototypes
Computational

implementation
Defines name of new

stochastic
node in BUGS

3.1. Create directory
stucture

m4/ (directory) Nothing

3.2. Create configuration
file

configure.ac Configuration
instructions as
per Autoconf

3.3. Create Make files Makefile.am
src/Makefile.am
src/distributions/

Makefile.am

Compilation
instructions

Compilation
instructions

Compilation
instructions

3.4. autoreconf -fvi
&& ./configure

make && make
install∗

(generates files)
(generates files and

compiles)

Produces auxiliary
files suitable for
system

Produces binary files
Copies binaries to

correct system
locations

Replace longname and shortname with the long and
short forms of the distribution name (e.g., Bernoulli and
Bern). ∗On Linux systems. See the text for the Windows
procedure.
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