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In recent years the Dirichlet process prior has experienced a great success in the context of Bayesian mixture modeling. The idea of
overcoming discreteness of its realizations by exploiting it in hierarchical models, combined with the development of suitable sampling
techniques, represent one of the reasons of its popularity. In this article we propose the normalized inverse-Gaussian (N–IG) process as
an alternative to the Dirichlet process to be used in Bayesian hierarchical models. The N–IG prior is constructed via its finite-dimensional
distributions. This prior, although sharing the discreteness property of the Dirichlet prior, is characterized by a more elaborate and sensible
clustering which makes use of all the information contained in the data. Whereas in the Dirichlet case the mass assigned to each observation
depends solely on the number of times that it occurred, for the N–IG prior the weight of a single observation depends heavily on the
whole number of ties in the sample. Moreover, expressions corresponding to relevant statistical quantities, such as a priori moments and
the predictive distributions, are as tractable as those arising from the Dirichlet process. This implies that well-established sampling schemes
can be easily extended to cover hierarchical models based on the N–IG process. The mixture of N–IG process and the mixture of Dirichlet
process are compared using two examples involving mixtures of normals.
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tive distribution; Semiparametric inference.

1. INTRODUCTION

Since the appearance of the article by Ferguson (1973), il-
lustrating the statistical implications of the Dirichlet process,
the Bayesian nonparametric literature has grown rapidly. Re-
search has focused on both the analysis of various properties of
the Dirichlet process and the proposal of alternative priors. In
particular, Blackwell (1973) showed that the Dirichlet prior se-
lects discrete distributions almost surely, which implies positive
probability of ties in a sample drawn from it, as highlighted by
Antoniak (1974). It is clear that such a property is undesirable
when one is interested in modeling continuous data.

Various extensions of the Dirichlet process have been pro-
posed to overcome this drawback. For instance, Mauldin,
Sudderth, and Williams (1992) and Lavine (1992) introduced
Pólya-tree priors. Although these can be constructed in such
a way as to put probability one on continuous distributions,
inference based on them depends heavily on the tree of par-
titions used for their construction. Paddock, Ruggeri, Lavine,
and West (2003) tried to get rid of this unpleasant feature
by making the partition itself random. The most fruitful ap-
proach to exploiting the Dirichlet process in inferential proce-
dures is represented by the mixture of Dirichlet process (MDP),
introduced by Lo (1984) and further developed by Ferguson
(1983). This prior is concentrated on the space of densities,
thus overcoming the discreteness problem, and it has been the
focus of much attention during the 1990s as a consequence
of the introduction of simulation-based inference, first devel-
oped by Escobar (1988). Relevant contributions include those
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by, among others, Escobar (1994), Escobar and West (1995),
MacEachern (1994), MacEachern and Müller (1998), and
Green and Richardson (2001). The model has been compre-
hensively reviewed by Dey, Müller, and Sinha (1998). The rea-
son of the success of the MDP, as pointed out by Green and
Richardson (2001), is that it exploits the discreteness of the
Dirichlet process rather than combating it, thus providing a flex-
ible model for clustering of items in a hierarchical setting.

This article proposes an alternative prior, the normalized
inverse-Gaussian (N–IG) prior, to be used in the context of
mixture modeling. Our proposed approach consists of the hi-
erarchical model (or a suitable semiparametric variation of it)
given by

(Yi|Xi)
ind∼ L (Yi|Xi), i = 1, . . . ,n,

(Xi|P̃)
iid∼ P̃, (1)

P̃ ∼ N–IG.

This represents a valid alternative to the corresponding model
based on the Dirichlet process, because the N–IG prior, al-
though sharing the discreteness property, turns out to have some
advantages, whereas it preserves almost the same tractability
as the Dirichlet process, it is characterized by a more elabo-
rate clustering property that makes use of all of the information
contained in the data. It is well known that the mass assigned
to each observation by the Dirichlet process depends solely on
the number of times that it occurs; in contrast, for the N–IG
process, the weight given to a single observation depends heav-
ily on the whole number of ties in the sample. For making
inference with nonparametric hierarchical mixture models, the
prior distribution of the number of distinct observations within
the sample, which takes on the interpretation of distribution of
the number of components in the mixture, is of great interest.
Such a distribution, obtained by Antoniak (1974) in the Dirich-
let case, admits a simple closed-form expression for the N–IG
process. Using two examples involving mixtures of normals,
we compare the behavior of the N–IG process mixture and the
MDP.
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Like the Dirichlet process, the N–IG process is a special
case of various classes of random probability measures. In-
deed, it is a particular case of normalized random measure with
independent increments (RMI). This class was introduced by
Kingman (1975) and, subsequently studied by Perman, Pitman,
and Yor (1992) and Pitman (2003). In a Bayesian context, it
was first considered by Regazzini, Lijoi, and Prünster (2003),
who generalized it also to nonhomogeneous measures (see also
Prünster 2002). Further extensions and results have been given
by James (2002). The N–IG process is also, when its parame-
ter measure is nonatomic, a special case of species sampling
model, a family of random probability measures introduced
by Pitman (1996) and studied, in a Bayesian framework, by
James (2002) and Ishwaran and James (2003). The N–IG and
Dirichlet processes play special roles within these classes (and,
indeed, within all random probability measures); to our knowl-
edge, they are the only priors for which completely explicit
expressions of their finite-dimensional distributions are avail-
able. Moreover, the N–IG process leads to explicit and tractable
expressions for quantities of statistical relevance. What dis-
tinguishes the Dirichlet process from normalized RMIs and
species-sampling models (and thus also from the N–IG process)
is its conjugacy, as shown by Prünster (2002). However, this
is no longer a problem, given the availability of suitable sam-
pling schemes. It is worth noting that a posterior characteri-
zation of the N–IG process, in terms of a latent variable, can
be deduced immediately from work of James (2002). Based on
the families of discrete random probability measures mentioned
earlier, recently general classes of mixture models have been
proposed. Ishwaran and James (2001) proposed replacing the
Dirichlet process by stick-breaking priors and study mixtures
based on the two-parameter Poisson–Dirichlet process, due to
Pitman (1995), in great detail. Ishwaran and James (2003) ex-
tended the analysis to cover species-sampling mixture mod-
els. Another proposal for generalizing MDP is represented by
the normalized random measures driven by increasing additive
processes due to Nieto-Barajas, Prünster, and Walker (2004)
(see also Prünster 2002).

The outline of the article is as follows. We start with the con-
struction of an N–IG process. We do this by first deriving the
N–IG distribution on (0,1) and its multivariate analog on the
(n − 1)-dimensional simplex in Section 2, where we compute
some of its moments as well. In Section 3 we show that there ex-
ists a random probability measure with these finite-dimensional
distributions, which we term the N–IG process. Such a con-
struction mimics the procedure adopted by Ferguson (1973) in
defining the Dirichlet process. The role played by the gamma
distribution in the Dirichlet case is attributed to the inverse-
Gaussian distribution in our case. Assuming exchangeability of
observations, we obtain the predictive distributions correspond-
ing to an N–IG process. We further develop the analysis of this
prior by illustrating the mechanism through which the weights
are allocated to the observations. This represents a key feature
for its potential success in applications. Moreover, we obtain
a closed-form expression for the prior probability distribution,
p(·|n), of the number of distinct observations in a sample of
size n. In Section 4 we consider the mixture of N–IG process
and show that well-known simulation techniques, such as those
set forth by Escobar and West (1995) and Ishwaran and James

(2001), can be extended in a straightforward way to deal with
a mixture of N–IG process. For illustrative purposes, we con-
sider simulated datasets, where observations are drawn from
uniform mixtures of normals, and compare the performance of
the mixture of N–IG process and the MDP in terms of both
posterior probabilities on the correct number of components
and log-Bayes factors. Finally, the extensively studied “galaxy”
dataset is analyzed. Another fruitful use of discrete nonpara-
metric priors in a continuous setting, is represented by the pos-
sibility of considering their filtered-variate version, as proposed
by Dickey and Jiang (1998). This naturally leads to considering
prior and posterior distributions of means of random probability
measures. In Section 5 we provide a description of the posterior
distribution of means of N–IG processes.

2. THE NORMALIZED
INVERSE–GAUSSIAN DISTRIBUTION

The beta distribution and its multidimensional analog, the
Dirichlet distribution, are commonly used as priors for the
binomial and multinomial models. It is well known that,
given n independent gamma random variables with Vi ∼
Ga(ᾱi,1), the Dirichlet distribution is defined as the distri-
bution of the vector (W1, . . . ,Wn), where Wi = Vi/

∑n
j=1 Vj

for i = 1, . . . ,n. If ᾱi > 0 for every i, then the (n − 1)-
dimensional distribution of (W1, . . . ,Wn−1) is absolutely con-
tinuous with respect to the product measure λn−1, where λ is
the Lebesgue measure on the real line, and its density function
on the simplex �n−1 = {(w1, . . . ,wn−1) : wi ≥ 0, i = 1, . . . ,

n − 1,
∑n−1

i=1 wi ≤ 1} is given by

f (w1, . . . ,wn−1)

= �(
∑n

i=1 ᾱi)
∏n

i=1 �(ᾱi)

(
n−1∏

i=1

wᾱi−1
i

)(

1 −
n−1∑

i=1

wi

)ᾱn−1

. (2)

Clearly, if n = 2, then (2) reduces to the beta density with para-
meter (ᾱ1, ᾱ2) (see, e.g., Bilodeau and Brenner 1999).

In this section we derive a distribution on the unit interval
and its multivariate analog on the simplex by substituting the
gamma distribution with the inverse-Gaussian distribution in
the foregoing construction. A random variable V has inverse-
Gaussian distribution with shape parameter α ≥ 0 and scale pa-
rameter γ > 0, denoted by V ∼ IG(α, γ ), if it has density with
respect to the Lebesgue measure given by

f (v) = α√
2π

v−3/2 exp

{

−1

2

(
α2

v
+ γ 2v

)

+ γ α

}

,

v ≥ 0, (3)

for α > 0, whereas V = 0 (almost surely) if α = 0. Seshadri
(1993) has provided an exhaustive account of the inverse-
Gaussian distribution. In what follows we assume, without loss
of generality, that γ = 1.

Let V1, . . . ,Vn be independent random variables with Vi ∼
IG(αi,1), where αi ≥ 0 for all i and αi > 0 for some i,
i = 1, . . . ,n. We define the N–IG distribution with parameter
(α1, . . . , αn), denoted by N–IG(α1, . . . , αn), as the distribution
of the random vector (W1, . . . ,Wn), where Wi = Vi/

∑n
j=1 Vj

for i = 1, . . . ,n. Clearly, if αj = 0 for some j, then Wj = 0 al-
most surely.
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The following proposition provides the density function
over �n−1 of an N–IG-distributed random vector.

Proposition 1. Suppose that the random vector (W1, . . . ,

Wm) is N–IG(α1, . . . , αm) distributed. If αi > 0 for every i =
1, . . . ,m, then the distribution of (W1, . . . ,Wm−1) is absolutely
continuous with respect to λm−1, and its density function on
�m−1 coincides with

f (w1, . . . ,wm−1)

= e
∑m

i=1 αi
∏m

i=1 αi

2m/2−1πm/2

× K−m/2
(√

Am(w1, . . . ,wm−1)
)

×
(

w1
3/2 · · ·wm−1

3/2
(

1 −
m−1∑

j=1

wj

)3/2

× [
Am(w1, . . . ,wm−1)

]m/4
)−1

, (4)

where Am(w1, . . . ,wm−1) = ∑m−1
i=1

α2
i

wi
+ α2

m/(1 − ∑m−1
j=1 wj)

and K denotes the modified Bessel function of the third type.
If m = 2, then (4) reduces to a univariate density on (0,1) of
the form

f (w) = eα1+α2α1α2

π

K−1(
√
A2(w) )

w3/2(1 − w)3/2(A2(w))1/2
. (5)

One of the most important features of the Dirichlet dis-
tribution is the additive property inherited from the gamma
distribution through which the Dirichlet distribution is de-
fined. The same happens for the N–IG distribution in the
sense that, if (W1, . . . ,Wn) is N–IG(α1, . . . , αn) distributed
and m1 < m2 < · · · < mk = n are integers, then the vec-
tor (

∑m1
i=1 Wi,

∑m2
i=m1+1 Wi, . . . ,

∑n
i=mk−1+1 Wi) has distribu-

tion N–IG(
∑m1

i=1 αi,
∑m2

i=m1+1 αi, . . . ,
∑n

i=mk−1+1 αi). This can
be easily verified on the basis of the additive property of the
inverse-Gaussian distribution.

A common desire is to associate to a probability distribution
some descriptive indexes that summarize its characteristics. The
following proposition provides some of these for the N–IG dis-
tribution. Set a = ∑n

j=1 αj and pi = αi/a for every i = 1, . . . ,n.

Proposition 2. Suppose that the random vector (W1, . . . ,Wn)

is N–IG(α1, . . . , αn) distributed; then

E[Wi] = pi,

var[Wi] = pi(1 − pi)a
2ea�(−2,a),

and

cov(Wi,Wj) = −pipja
2ea�(−2,a) for i �= j,

where �(·, ·) denotes the incomplete gamma function.

It is worth noting that the moments corresponding to an N–IG
distribution are quite similar to those of the Dirichlet distribu-
tion. Indeed, the structure is the same and they differ just by
a multiplicative constant. Figures 1 and 2 depict various fea-
tures of Dirichlet and N–IG distributions. For comparative pur-
poses, the parameters have been chosen in such a way that
their means and variances coincide. Recall that if a random

vector is Dirichlet distributed, then E[Wi] = ᾱi/ā := p̄i and
var[Wi] = p̄i(1 − p̄i)/(1 + ā), for any i = 1, . . . ,n, having set
ā := ∑n

i=1 ᾱi. Thus the means coincide if the pi = p̄i, for any i,
whereas given a, the variance match is achieved by solving for ā
the equation a2ea�(−2,a) = (ā + 1)−1. The plots seems to
suggest a slightly lower concentration of the mass of the N–IG
distribution around the barycenter of the simplex. Such a fea-
ture can be interpreted as the N–IG being less informative than
the Dirichlet prior. This will become apparent in the sequel.

3. THE NORMALIZED
INVERSE–GAUSSIAN PROCESS

3.1 Definition and Existence of the Normalized
Inverse-Gaussian Process

In this section we define and show existence of the N–IG
process. Toward this end, we suppose that the observations take
values on some complete and separable metric space X, en-
dowed with its Borel σ -field X . The N–IG process, P̃, is a
random probability measure on (X,X ) that can be defined via
its family of finite-dimensional distributions, as was done by
Ferguson (1973) for the Dirichlet process.

Let P = {QA1,...,An : A1, . . . ,An ∈ X ,n ≥ 1} be a family
of probability distributions, and let α be a finite measure on
(X,X ) with α(X) = a > 0. If {A1, . . . ,An} is a measurable par-
tition of X, then set

QA1,...,An(C) =
∫

C∩�n−1

f (v1, . . . , vn−1)dv1 · · · dvn−1, (6)

∀C ∈ Rn, where f is defined as in (4) with αi = α(Ai) > 0, for
all i. If {A1, . . . ,An} is not a partition of X, then consider the
partition {B1, . . . ,Bm} that it generates and set

QA1,...,An(C) = QB1,...,Bm

({

(x1, . . . , xm) ∈ [0,1]m :

(∑

(1)

xi, . . . ,
∑

(n)

xi

)

∈ C

})

,

where
∑

( j) means that the sum extends over all indices i ∈
{1, . . . ,m} for which Bi ⊂ Aj. We can show that P satisfies the
following conditions:

(C1) For any n ≥ 1 and any finite permutation π of
(1, . . . ,n),

QA1,...,An(C) = QAπ(1),...,Aπ(n)
(πC), ∀C ∈ B(Rn),

where πC = {(xπ(1), . . . , xπ(n)) : (x1, . . . , xn) ∈ C}.
(C2) QX = δ1, where δx represents the point mass at x.
(C3) For any family of sets {A1, . . . ,An} in X , let {D1, . . . ,

Dh} be a measurable partition of X such that it is finer
than the partition generated by {A1, . . . ,An}. Then, for
any C ∈ B(Rn),

QA1,...,An(C) = QD1,...,Dh(C
′),

where

C′ =
{

(x1, . . . , xh) ∈ [0,1]h :

(∑

(1)

xi, . . . ,
∑

(n)

xi

)

∈ C

}

.
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Figure 1. N–IG and Dirichlet Densities. (a) N–IG (·····) and Dirichlet (—–) densities on (0, 1) with p1 = p̄1 = 1/2, a = .5, and ā = 1.737. (b) Dirichlet
density on ∆2 with p̄1 = p̄2 = 1/3 and ā = 1.737. (c) N–IG density on ∆2 with p1 = p2 = 1/3 and a = .5. (d) N–IG (·····) and Dirichlet (—–) densities
on (0, 1) with p1 = p̄1 = 1/2, a = 1.8, and ā = 3.270. (e) Dirichlet density on ∆2 with p̄1 = p̄2 = 1/3 and ā = 3.270. (f) N–IG density on ∆2 with
p1 = p2 = 1/3 and a = 1.8.

(C4) For any sequence (An)n≥1 of measurable subsets of X

such that An ↓ ∅,

QAn ⇒ δ0,

where the symbol ⇒ denotes, as usual, weak conver-
gence of a sequence of probability measures.

Hence, according to proposition 3.9.2 of Regazzini (2001),
there exists a unique random probability measure admitting P
as its family of finite-dimensional distributions. We term such a
random probability measure P̃ an N–IG process.

3.2 Relationship to Other Classes of Discrete
Random Probability Measures

In this section we discuss the relationship of the N–IG
process to other classes of discrete random probability mea-

sures. First, recall that Ferguson (1973) also proposed an al-
ternative construction of the Dirichlet process as a normal-
ized gamma process. The same can be done in this case
by replacing the gamma process with an inverse-Gaussian
process, that is, an increasing Lévy process, ξ := {ξt : t ≥ 0},
which is uniquely characterized by its Lévy measure, ν(dv) =
(2πv3)−1/2e−v/2 dv. If α is a finite and nonnull measure on R,
then the time change t = A(x) = α((−∞, x]) yields a reparame-
terized process, ξA, which still has independent, but generally
not stationary, increments. Because ξA is finite and positive al-
most surely, we are in a position to consider

F̃(x) = ξA(x)

ξa
for every x ∈ R (7)
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Figure 2. Contour Plots for the Dirichlet, (a)–(c), and N–IG, (d)–(f), Densities on ∆2 With p1 = p2 = p̄1 = p̄2 = 1/3 for Different Choices of
a and ā.

as a random probability distribution function on R, where
a := α(R). The corresponding random probability P̃ is an N–IG
process on R. As shown by Regazzini et al. (2003), such a con-
struction holds for any increasing additive process, provided
that the total mass of the Lévy measure is unbounded, giving
rise to the class of normalized RMI. James (2002) extended
normalized RMIs to Polish spaces. Thus the N–IG process
represents clearly a particular case of normalized RMI. We
remark that the idea of defining a general class of discrete ran-
dom probability measures via normalization is due to Kingman
(1975), and previous stimulating work was done by Perman
et al. (1992) and Pitman (2003).

The N–IG process, provided that α is nonatomic, turns out to
also be a species-sampling model. This class of random proba-
bility measures, due to Pitman (1996), is defined as

P̃(·) =
∑

i≥1

PiδXi(·) +
(

1 −
∑

i≥1

Pi

)

H(·), (8)

where 0 < Pi < 1 are random weights such that
∑

i>1 Pi ≤ 1,
independent of the locations Xi, which are iid with some
nonatomic distribution H. A species-sampling model is com-
pletely characterized by H, which is the prior guess at the
shape of P̃, and the so-called “exchangeable partition proba-
bility function” (EPPF) (see Pitman 1996). Although the de-
finition of species-sampling model provides an intuitive and
quite general framework, it leaves a difficult open problem,
namely the concrete assignment of the random weights Pi. It
is clear that such an issue is crucial for applicability of these
models. Up to now, all tractable species sampling models have
been defined by exploiting the so-called “stick-breaking” proce-
dure, already adopted by Halmos (1944) and Freedman (1963).
(See Ishwaran and James 2001 and references therein for exam-
ples of what they call “stick-breaking priors.”) More recently,
Pitman (2003) considered Poisson–Kingman models, a sub-
class of normalized RMI, which are defined via normaliza-
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tion of homogeneous random measures with independent incre-
ments under the additional assumption of α being nonatomic.
He showed that Poisson–Kingman models are a subclass of
species-sampling models and characterized them by deriving an
expression of the EPPF. From these considerations, it follows
that an N–IG process, provided that α is nonatomic, is also a
species-sampling model. Note that in the N–IG case, a closed-
form expression of the EPPF can be derived; based on work of
Pitman (2003) or James (2002) combined with the arguments
used in the proof of Proposition 3, one obtains (A.1) in the Ap-
pendix. In this article we do not pursue the approach based on
Poisson process partition calculus and refer the reader to the ar-
ticle by James (2002) for extensive calculus relative to EPPFs.
We just remark that the N–IG process represents the first exam-
ple (at least to our knowledge) of a tractable species-sampling
model, which cannot be derived via a stick-breaking procedure.

Before proceeding, it seems worthwhile to point out that
the peculiarities of the N–IG and Dirichlet processes compared
with other members of these classes (and, indeed, within all ran-
dom probability measures) is represented by the fact that their
finite-dimensional distributions are known explicitly.

3.3 Some Properties of the Normalized
Inverse-Gaussian Process

In this section we study some properties of the N–IG process.
In particular, we discuss discreteness, derive some of its mo-
ments and the predictive distribution, and consider the distribu-
tion of the number of distinct observations with a sample drawn
from an N–IG process.

A first interesting issue is the almost-sure discreteness of an
N–IG process. On the basis of the construction provided in Sec-
tion 3.1, it follows that the distribution of the N–IG process
admits a version that selects discrete probability measures al-
most surely. By a result of James (2003) that makes use of the
construction in (7), we have that all versions of P̃ are discrete.
Hence we can affirm that the N–IG process is discrete almost
surely.

The moments of an N–IG process with parameter α follow
immediately from Proposition 2. Let B,B1,B2 ∈ X and set
C := B1 ∩ B2 and P0(·) = α(·)/a. Then

E[P̃(B)] = P0(B),

var[P̃(B)] = P0(B)(1 − P0(B))a2ea �(−2,a),

and

cov
(
P̃(B1), P̃(B2)

) = [P0(C) − P0(B1)P0(B2)]a2ea�(−2,a).

Note that if P0 is diffuse, then the mean of P̃ follows also
from the fact that the N–IG process is a species-sampling
model. These quantities are usually exploited for incorporating
real qualitative prior knowledge into the model. For instance,
Walker and Damien (1998) suggested controlling, the prior
guess P0, as well as also the variance of the random probabil-
ity measure at issue. Walker, Damien, Laud, and Smith (1999)
provided a detailed discussion on the prior specification in non-
parametric problems.

An important goal in inferential procedures is predicting fu-
ture values of a random quantity based on its past outcomes.
Suppose that a sequence (Xn)n≥1 of exchangeable observa-
tions is defined in such a way that, given P̃, the Xi’s are iid

with distribution P̃. Moreover, let X∗
1 , . . . ,X∗

k denote the k dis-
tinct observations within the sample, X(n) = (X1, . . . ,Xn), with
nj > 0 terms being equal to X∗

j , for j = 1, . . . , k, and such that
∑

j nj = n. The next proposition provides the predictive distrib-
utions corresponding to an N–IG process.

Proposition 3. If P̃ is an N–IG process with diffuse parame-
ter α, then the predictive distributions are of the form

Pr
(
Xn+1 ∈ B

∣
∣X(n)

) = w(n)
0 P0(B) + w(n)

1

k∑

j=1

(nj − 1/2)δX∗
j
(B)

for every B ∈ X , with

w(n)
0 =

∑n
r=0

(n
r

)
(−a2)−r+1�(k + 1 + 2r − 2n;a)

2n
∑n−1

r=0

(n−1
r

)
(−a2)−r�(k + 2 + 2r − 2n;a)

and

w(n)
1 =

∑n
r=0

(n
r

)
(−a2)−r+1�(k + 2r − 2n;a)

n
∑n−1

r=0

(n−1
r

)
(−a2)−r�(k + 2 + 2r − 2n;a)

.

Note that the proof of Proposition 3 exploits a general result
of Pitman (2003), later derived independently by means of a
different technique by Prünster (2002) (see also James 2002).

Thus the predictive distribution is a linear combination of
the prior guess P0 and a weighted empirical distribution with
explicit expression for the weights. Moreover, a generalized
Pólya urn scheme follows immediately, which is given in (11).
To highlight its distinctive features, it is useful to compare it
with the prediction rule of the Dirichlet process. In the lat-
ter case, one has that Xn+1 is new with probability a/(a + n)

and that it coincides with X∗
j with probability nj/(a + n) for

j = 1, . . . , k. Thus the probability allocated to previous obser-
vations is n/(a + n) and does not depend on the number k of
distinct observations within the sample. Moreover, the weight
assigned to each X∗

j depends only on the number of observa-
tions equal to X∗

j , a characterizing property of the Dirichlet
process that at the same time represents one if its drawbacks
(see Ferguson 1974). In contrast, for the N–IG process, the
mechanism is quite interesting and exploits all available in-
formation. Given X(n), the (n + 1)st observation is new with
probability w(n)

0 and coincides with one of the previous with
probability (n − k/2)w(n)

1 . In this case, the balancing between
new and old observations takes the number of distinct val-
ues k into account; it is easy to verify numerically that w(n)

0 is
decreasing as k decreases and, thus one removes more mass
from the prior if fewer distinct observations (i.e., more ties) are
recorded. Moreover, allocation of the probability to each X∗

j is
more elaborate than for the Dirichlet case; instead of increasing
the weight proportionally to the number of ties, the probability
assigned to X∗

j is reinforced more than proportionally each time
a new tie has been recorded. This can be explained by the ar-
gument that the more often X∗

j is observed, the stronger is the
statistical evidence in its favor and, thus it is sensible to reallo-
cate mass toward it.

A small numerical example may clarify this point. When
comparing the Dirichlet and N–IG processes, it is sensible to
fix their parameter such that they have the same mean and vari-
ance, as was done in Section 2. Recall that this is tantamount
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Table 1. Posterior Probability Allocation of the Dirichlet
and N–IG Processes

n = 10 Dirichlet process N–IG process

New observation .1480 .2182

X1
* = .3, n1 = 4 .3408 .3420

X2
* = .1, n2 = 3 .2556 .2443

X3
* = .6, n3 = 2 .1704 .1466

X4
* = .5, n4 = 1 .0852 .0489

to requiring them to have the same prior guess P0 and impos-
ing var(Dᾱ(B)) = var(P̃(B)) for every B ∈ X , which is equiv-
alent to (ā + 1)−1 = a2ea�(−2,a), where ā and a are the total
masses of the parameter measures of the Dirichlet and N–IG
processes.

To highlight the reinforcement mechanism, let X = [0,1],
P0 equal to the uniform distribution with a = .5 and ā = 1.737.
Suppose that one has observed X(10) with four observations
equal to .3, three observations equal to .1, two observations
equal to .6, and one observation equal to .5. Table 1 gives
the probabilities assigned by the predictive distribution of the
Dirichlet and N–IG processes.

From this table, the reinforcement becomes apparent. In the
Dirichlet case, having four ties in .3 means assigning to it
four times the probability given to an observation that appeared
once. For the N–IG process, things are very different; the mass
assigned to the prior (i.e., to observing a new value) is higher,
indicating the greater flexibility of the N–IG prior. Moreover,
the probability assigned to .6 is more than two times the mass
assigned to .5, the probability assigned to .1 is greater than 3/2
times the mass given to .6, and so on. Having a sample with
many ties means having significant statistical evidence, with
reference to the associated clustering structure, and the N–IG
process makes use of this information.

A further remarkable issue concerns determination of the
prior distribution for the number k of distinct observations X∗

i ’s,
among the n being observed. Antoniak (1974) remarked that
such a distribution is induced by the distribution assigned to
the random probability measure and gave an expression for the
Dirichlet case. The corresponding formula for the N–IG process
is given in the following proposition.

Proposition 4. The distribution of the number of distinct ob-
servations k in a sample of size n is given by

p(k|n) =
(

2n − k − 1
n − 1

)
ea(−a2)n−1

22n−k−1�(k)

×
n−1∑

r=0

(
n − 1

r

)

(−a2)−r

× �(k + 2 + 2r − 2n; a) (9)

for k = 1, . . . ,n.

Note that the expression for p(k|n) in the Dirichlet case is

cn(k)a
k �(a)

�(a + n)
, (10)

where cn(k) is the absolute value of a Stirling number of the
first kind (for details, see Green and Richardson 2001). Unlike
in (10), the evaluation of which can be achieved by resorting to
recursive formulas for Stirling numbers, evaluation of the ex-
pression in (9) is straightforward. Table 2 compares the priors
p(k|n) corresponding to the Dirichlet and N–IG processes, in
the same setup of Table 1.

In this toy example, note that the distribution p(·|n) induced
by the N–IG prior is flatter than that corresponding to the
Dirichlet process. This fact plays a role in the context of mixture
modeling to be examined in the next section.

4. THE MIXTURE OF NORMALIZED
INVERSE–GAUSSIAN PROCESS

In light of the previous results, it is clear that the reinforce-
ment mechanism makes the N–IG prior an interesting alterna-
tive to the Dirichlet process. Nowadays the Dirichlet process
is seldom used directly for assessing inferences; indeed, it is
commonly exploited as the crucial building block in a hier-
archical mixture model of type (1). Here we aim to study a
mixture of N–IG process model as set in (1) and suitable semi-
parametric variations of it. The mixture of N–IG process repre-
sents a particular case of normalized random measures driven
by increasing additive processes (see Nieto-Barajas et al. 2004)
and also of species-sampling mixture models (see Ishwaran and
James 2003). With respect to both classes, the mixture of N–IG
process stands out for its tractability.

To exploit a mixture of N–IG process for inferential pur-
poses, it is essential to derive an appropriate sampling scheme.
In such a framework, knowledge of the predictive distributions,
determined in Proposition 3, is crucial. Indeed, most of the sim-
ulation algorithms developed in Bayesian nonparametrics rely
on variations of the Blackwell–MacQueen Pólya urn scheme
and on the development of appropriate Gibbs sampling pro-
cedures. (See Escobar 1994; MacEachern 1994; Escobar and
West 1995 for the Dirichlet case and Pitman 1996; Ishwaran
and James 2001 for extensions to stick-breaking priors.) In the
case of an N–IG process, it follows that the joint distribution
of X(n) can be characterized by the following generalized Pólya
urn scheme. Let Z1, . . . ,Zn be an iid sample from P0. Then a
sample X(n) from an N–IG process can be generated as follows.
Set X1 = Z1, and for i = 2, . . . ,n,

(
Xi

∣
∣X(i−1)

) =






Zi with probability w(i−1)
0

X∗
i,j with probability

(nj − 1/2)w(i−1)
1 , j = 1, . . . , ki,

(11)

Table 2. Prior Probabilities for k Corresponding to the Dirichlet and N–IG Processes

n = 10 k = 1 k = 2 k = 3 k = 4 k = 5 k = 6 k = 7 k = 8 k = 9 k = 10

Dirichlet
ā = 1.737 .0274 .1350 .2670 .2870 .1850 .0756 .0196 .0031 .00029 .00001

N–IG
a = .5 .0523 .1286 .1813 .1936 .1716 .1296 .0824 .042 .0155 .0031
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Figure 3. Prior Probabilities for k (n = 100) Corresponding to the N–IG Process and the Dirichlet Process for Different Values of a ( ā). These
values were chosen to match the modes at 6, 14, and 28 [ Dirichlet ( ā = 1.2, 4.2, 12.6) (left ā = 1.2 to right ā = 12.6); N–IG (a = .1, 1, 5)
(left a = .1 to right a = 5)].

where ki represents the number of distinct observations, de-
noted by X∗

i,1, . . . ,X∗
i,ki

, in X(i−1), and w(i−1)
0 and w(i−1)

1 are as
given in Proposition 3.

Moreover, the result in Proposition 4 can be interpreted as
providing the prior distribution of the number k of components
in the mixture, for a given sample size n. As in the Dirichlet
case, a smaller total mass a yields a p(·|n) more concentrated
on smaller values of k. This can be explained by the fact that a
smaller a gives rise to a smaller w(n)

0 ; that is, it generates new
data with lower probability. However, the p(·|n) induced by the
N–IG prior is apparently less informative than that correspond-
ing to the Dirichlet process prior and thus is more robust with
respect to changes in a. A qualitative illustration is given in Fig-
ure 3, where the distribution of k given n = 100 observations is
depicted for the N–IG and Dirichlet processes. We connected
the probability points by straight lines only for visual simplifi-
cation. Note that the mode of the distribution of k corresponding
to the N–IG never has probability larger than .07.

Recently, new algorithms have been proposed for dealing
with mixtures. Extending the work of Brunner, Chan, James,
and Lo (2001) on an iid sequential importance sampling pro-
cedure for fitting MDPs, Ishwaran and James (2003) proposed
a generalized weighted Chinese restaurant algorithm that cov-
ers species-sampling mixture models. They formally derived
the posterior distribution of a species-sampling mixture. To
draw approximate samples from this distribution, they devised
a computational scheme that requires knowledge of the condi-
tional distribution of the species-sampling model, P̃, given the
missing values X1, . . . ,Xn. When feasible, such an algorithm
has the merit of reducing the Monte Carlo error (see Ishawaran
and James 2003 for details and further references). In the case
of an N–IG process, sampling from its posterior law is not
straightforward, because it is characterized in terms of a latent

variable (see James 2002). Further investigations are needed to
implement these interesting sampling procedures efficiently in
the N–IG case and, more generally, for normalized RMI. Prob-
lems of the same type arise if one is willing to implement the
scheme proposed by Nieto-Barajas et al. (2004).

To carry out a more detailed comparison between Dirichlet
and N–IG mixtures, we next consider two illustrative examples.

4.1 Simulated Data

Here we consider simulated data sampled from uniform mix-
tures of normal distributions with different number of compo-
nents and compare the behavior of the MDP and mixture of
N–IG process for different choices of priors on the number of
components. We then evaluate the performance, in terms of pos-
terior probabilities, on the correct number of components and in
terms of log-Bayes factors for testing {k = k∗} against {k �= k∗},
where k∗ represents the correct number of components.

We first analyze a dataset Y(100), simulated from a mixture
of three normal distributions with means −4,0, and 8; variance
1; and corresponding weights .33, .34, and .33. Let N(·|m, v)
denote the normal distribution with mean m and variance v > 0.
We consider the following hierarchical model to represent such
data:

(Yi|Xi)
ind∼ N(Yi|Xi,1), i = 1, . . . ,100,

(Xi|P̃)
iid∼ P̃,

P̃ ∼ P,

where P refers to either an N–IG process or a Dirichlet
process. Both are centered at the same prior guess, N(·|Ȳ, t2),
where t is the data range, that is, t = max Yi − min Yi. To fix
the total masses a and ā, we no longer consider the issue of
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Figure 4. Prior Probabilities for k (n = 100) Corresponding to the Dirichlet and N–IG Processes [ Dirichlet ( ā = 2); N–IG (a = .2365)].

matching variances. For comparative purposes in this mixture-
modeling framework, it seems more plausible to start with sim-
ilar priors for the number of components k. Hence a and ā are
such that the mode of p(·|n) is the same in both the Dirichlet
and N–IG cases. We choose to set the mode equal to k = 8 in
both cases, yielding ā = 2 and a = .2365. The corresponding
distributions are plotted in Figure 4.

In this setup we draw a sample from the posterior distribu-
tion L (X(100)|Y(100)) by iteratively drawing samples from the
distributions of (Xi|X(100)

−i ,Y(100)), for i = 1, . . . ,100, given by

P
(
Xi ∈ ·∣∣X(100)

−i ,Y(100)
)

= q∗
i,0N

(

Xi ∈ ·
∣
∣
∣
t2Yi + Ȳ

1 + t2
,

t2

t2 + 1

)

+
ki∑

j=1

q∗
i,jδX∗

j
(·), (12)

where X(100)
−i is the vector X(100) with the ith coordinate deleted

and ki refers to the number of X∗
j ’s in X(100)

−i . The mixing pro-
portions are given by

q∗
i,0 ∝ w(99)

i,0 N(·|Ȳ, t2 + 1)

and

q∗
i,j ∝ {

(nj − 1/2)w(99)
i,1

}
N(·|X∗

j ,1),

subject to the constraint
∑ki

j=0 q∗
i,j = 1. The values for w(99)

i,0
and w(99)

i,1 are given as in Proposition 3 when applied for de-
termining the “predictive” distribution of Xi given X(100)

−i ; they
are computed with a precision of 14 decimal places. Note that
in general, w(99)

i,0 and w(99)
i,1 depend only on a, n, and ki and not

on the different partition ξ of n = nξ1 + · · · + nξk . This implies

that a table containing the values for w(99)
i,0 and w(99)

i,1 , for a given
a, n, and k = 1, . . . ,99 can be generated in advance for use in
the Pólya urn Gibbs sampler. Further details are available on
request from the authors.

To obtain our estimates, we resorted to the Pólya urn Gibbs
sampler, such as the one set forth by Escobar and West (1995).
As pointed out by Ishwaran and James (2001), such a gener-
alized Pólya urn characterization also can be considered for
the N–IG case, the only ingredients being the weights of the
predictive distribution determined in Proposition 3. All of the
following results were obtained by implementing the MCMC
algorithm using 10,000 iterations, after 2,000 burn-in sweeps.
Figure 5 depicts the posterior density estimates and the true
density that generated the data.

The predictive density corresponding to the mixture of N–IG
process clearly represents a more accurate estimate. Table 3
provides the prior and posterior probabilities of the number of
components. The prior probabilities are computed according to
Proposition 4, whereas the posterior probabilities follow from
the MCMC output. One may note that the posterior mass as-
signed to k = 3 by the N–IG process is significantly higher than
that corresponding to the MDP.

As far as the log-Bayes factors are concerned, one obtains
BFDα

= 5.46 and BFN–IGα = 4.97, thus favoring the MDP. The
reason of this outcome seems to be due to the fact that the prior
probability on the correct number of components is much lower
for the MDP.

It is interesting to look also at the case in which the mode
of p(k|n) corresponds to the correct number of components
k∗ = 3. In such a case the prior probability on k∗ = 3 is much
higher for the MDP, being .285 against .0567 of the mixture of
N–IG process. This results in a posterior probability on k∗ = 3
of .9168 for the MDP and .86007 for the mixture of N–IG
process, whereas the log-Bayes factors favor the N–IG mixture,
being BFDα

= 3.32 and BFN−IGα = 4.63. This again seems to
be due to the fact that the prior probability of one process on
the correct number of components is much lower than the one
corresponding to the other.
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Figure 5. Posterior Density Estimates for the Mixture of Three Normals With Means −4, 0, 8, Variance 1, and Mixing Proportions .33, .34,
and .33 [ Dirichlet ( ā = 2); model; N–IG (a = .2365)].

The next dataset, Y(120), that we deal with in this framework
is drawn from a uniform mixture of six normal distributions
with means −10,−6,−2,2,6, and 10 and variance .7. Both the
Dirichlet and N–IG processes are again centered at the same
prior guess, N(·|Ȳ, t2), where t represents for the data range.
Set a = .01 and ā = .5 such that p(k|n) have mode at k = 3
for both the MDP and mixture of N–IG process. Such an ex-
ample is meant to shed some light on the ability of the mix-
ture of N–IG process to detect clusters when starting from a
prior with mode at a small number of clusters and data coming
from a mixture with more components. In this case the mix-
ture of N–IG process performs better than the MDP both in
terms of posterior probabilities, as shown in Table 4, and also
in terms of log-Bayes factors, because BFDα

= 3.13, whereas
BFN−IGα = 3.78.

If one considers data drawn from mixtures with more com-
ponents, then the mixture of N–IG process does systematically
better in terms of posterior probabilities, but the phenom-
enon of “relatively low probability on the correct number of
components” of the MDP reappears, leading it to be favored
in terms of Bayes factors. For instance, we have taken 120
data from an uniform mixture of eight normals with means
−14,−10,−6,−2,2,6,10, and 14 and variance .7 and set
a = .01 and ā = .5, so the p(k|120) have mode at k = 3. This
yields a priori probabilities on k∗ = 8 of .00568 and .0489 and

a posteriori probabilities of .0937 and .4338 for the MDP and
mixture of N–IG process. In contrast, the log-Bayes factors
are BFDα

= 2.90 and BFN−IGα = 2.73. One can alternatively
match the a priori probability on the correct number of compo-
nents such that p(8|120) = .04765 for both priors. This happens
if we set ā = .86, which results in the MDP having mode at
k = 4, closer to the correct number k∗ = 8, whereas the mixture
of N–IG process remains unchanged. This results in a poste-
rior probability on k∗ = 8 for the MDP of .1134 and, having
removed the influence of the low probability p(8|120), in a log-
Bayes factor of .94.

4.2 Galaxy Data

In this section we reanalyze the galaxy dataset popularized
by Roeder (1990). These data, consisting of the relative ve-
locities (in km/sec) of 82 galaxies, have been widely studied
within the framework of Bayesian statistics (see, e.g., Roeder
and Wasserman 1997; Green and Richardson 2001; Petrone and
Veronese 2002). For comparison purposes, we use the follow-
ing semiparametric setting, also analyzed by Escobar and West
(1995):

(Yi|mi,Vi)
ind∼ N(Yi|mi,Vi), i = 1, . . . ,82,

(mi,Vi|P̃)
iid∼ P̃,

P̃ ∼ P,

Table 3. Prior and Posterior Probabilities for k Corresponding to the Dirichlet and N–IG Processes Such That p(k|100) Has Mode at k = 8

n = 100 k ≤ 2 k = 3 k = 4 k = 5 k = 6 k = 7 k = 8 k ≥ 9

Dirichlet Prior .00225 .00997 .03057 .06692 .11198 .14974 .16501 .46356
ā = 2 Posterior .7038 .2509 .0406 .0046 .0001

N–IG Prior .02404 .0311 .0419 .04937 .05386 .05611 .05677 .68685
a = .2365 Posterior .8223 .1612 .0160 .0005
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Table 4. Prior and Posterior Probabilities for k Corresponding to the Dirichlet and N–IG Processes Such That p(k|120) Has Mode at 3

n = 120 k = 1 k = 2 k = 3 k = 4 k = 5 k = 6 k = 7 k = 8 k ≥ 9

Dirichlet Prior .08099 .21706 .27433 .21954 .12583 .05532 .01949 .005678 .00176
ā = .5 Posterior .0148 .3455 .5722 .064 .0033 .0002

N–IG Prior .04389 .05096 .05169 .05142 .05082 .04997 .0489 .04765 .6047
a = .01 Posterior .0085 .6981 .2395 .0479 .006

where, as before, P represents either the N–IG process or the
Dirichlet process. Again, the prior guess P0 is the same for both
nonparametric priors and is characterized by

P0(A) =
∫

A
N(x|µ,τv−1)Ga(v|s/2,S/2)dx dv,

where A ∈ B(R×R
+) and Ga(·|c,d) is the density correspond-

ing to a gamma distribution with mean c/d. Similar to Escobar
and West (1995), we assume a further hierarchy for µ and τ ,
namely µ ∼ N(·|g,h) and τ−1 ∼ Ga(·|w,W). We choose the
hyperparameters for this illustration to fit those used by Escobar
and West (1995), namely g = 0,h = .001,w = 1, and W = 100.
For comparative purposes, we again choose a to achieve the
mode match; if the mode of p(·|82) is in k = 5, as it is for the
Dirichlet process with ā = 1, then a = .0829. From Table 5, it is
apparent that the N–IG process provides a noninformative prior
for k compared with the distribution induced by the Dirichlet
process.

The details of the Pólya urn Gibbs sampler are as provided by
Escobar and West (1995), with the only difference being the re-
placement of the weights with those corresponding to the N–IG
process given in Proposition 3. Figure 6 shows the posterior
density estimates based on 10,000 iterations considered after a
burn–in period of 2,000 sweeps. Table 5 displays the prior and
the posterior probabilities of the number of components in the
mixture.

Some comments on the results in Table 5 are in order.
Escobar and West (1995) extensively discussed the issue of
learning about the total mass ā. This is motivated by the sen-
sitivity of posterior inferences on the choice of the parameter ā.
Hence they randomized ā and specified a prior distribution
for it. It seems worth noting that the posterior distribution
of the number of components for the N–IG process, with a
fixed a, essentially coincides with the corresponding distribu-
tion arising from an MDP with random ā, given in table 6 of
Escobar and West (1995). Some explanations of this phenom-
enon might be that the prior p(k|n) is essentially noninforma-
tive in a broad neighborhood of its mode, thus mitigating the
influence of a on posterior inferences, and the aggressiveness
in reducing/detecting clusters of the N–IG mixture, shown in
the previous example, seems also to be a plausible reason of
such a gain in “parsimony.” However, for a mixture of N–IG
process, it may be of interest to have a random a. To achieve
this, a Metropolis step must be added in the algorithm. In prin-
ciple, this is straightforward. The only drawback would be an

increase in the computational burden, because computing the
weights for the N–IG process is, after all, not as quick as com-
puting those corresponding to the Dirichlet process.

5. THE MEAN OF A NORMALIZED
INVERSE–GAUSSIAN PROCESS

An alternative use of discrete nonparametric priors for infer-
ence with continuous data is represented by histogram smooth-
ing. Such a problem can be handled by exploiting the so-called
“filtered-variate” random probability measures as defined by
Dickey and Jiang (1998). These quantities essentially coincide
with suitable means of random probability measures. Here we
focus attention on means of N–IG processes. After the recent
breakthrough achieved by Cifarelli and Regazzini (1990), this
has become a very active area of research in Bayesian nonpara-
metrics (see, e.g., Diaconis and Kemperman 1996; Regazzini,
Guglielmi, and Di Nunno 2002 for the Dirichlet case and
Epifani, Lijoi, and Prünster 2003; Hjort 2003; James 2002
for results beyond the Dirichlet case). In particular, Regazzini
et al. (2003) dealt with means of normalized priors, providing
conditions for their existence, their exact prior, and approximate
posterior distribution. Here we specialize their general results to
the N–IG process and derive the exact posterior density.

Letting X = R and X = B(R), we study the distribution
of the mean

∫
R

xP̃(dx). The first issue to face is its finiteness.
A necessary and sufficient condition for this to hold can be de-
rived from proposition 1 of Regazzini et al. (2003) and is given
by

∫
R

√
2λx + 1α(dx) < +∞ for every λ > 0.

As far as the problem of the distribution of a mean is con-
cerned, proposition 2 of Regazzini et al. (2003) and some cal-
culations lead to an expression of the prior distribution function
of the mean as

F(σ ) = 1

2
− 1

π
ea

∫ +∞

0

1

t
exp

{

−
∫

R

4
√

1 + 4t2(x − σ)2

× cos

[
1

2
arctan(2t(x − σ))

]

α(dx)

}

× sin

{∫

R

4
√

1 + 4t2(x − σ)2

× sin

[
1

2
arctan(2t(x − σ))

]

α(dx)

}

dt,

(13)

Table 5. Posterior Probabilities for k Corresponding to the Dirichlet and N–IG Processes in the Galaxy Data Example

n = 82 k ≤ 3 k = 4 k = 5 k = 6 k = 7 k = 8 k = 9 k = 10 k ≥ 11

Dirichlet Prior .2140 .2060 .214 .169 .106 .0548 .0237 .0088 .0038
ā = 1 Posterior .0465 .125 .2524 .2484 .2011 .08 .019 .0276

N–IG Prior .1309 .0617 .0627 .0621 .0607 .0586 .0562 .0534 .4537
a = .0829 Posterior .003 .0754 .168 .2301 .2338 .1225 .0941 .0352 .0379
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Figure 6. Posterior Density Estimates for the Galaxy Dataset [ N–IG (a = .0829); Dirichlet (a = 2)].

for any σ ∈ R. Before providing the posterior density of a mean
of an N–IG process, it is useful to introduce the Liouville–Weyl
fractional integral, defined as

In
c+h(σ ) =

∫ σ

c

(σ − u)n−1

(n − 1)! h(u)du

for n ≥ 1, and set equal to the identity operator for n = 0 for any
c < σ . Moreover, let Re z and Im z denote the real and imagi-
nary part of z ∈ C.

Proposition 5. If P̃ is an N–IG process with diffuse parame-
ter α and −∞ ≤ c = inf supp(α), then the posterior density of
the mean is of the form

ρx(n) (σ ) = 1

π
In−1
c+ Imψ(σ) if n is even (14)

and

ρx(n) (σ ) = −1

π
In−1
c+ Reψ(σ) if n is odd, (15)

with

ψ(σ) = (n − 1)!2n−1
∫ ∞

0 tn−1e− ∫
R

√
1−it2(x−σ)α(dx)

a2n−(2+k)
∑n−1

r=0

(n−1
r

)
(−a2)−r�(k + 2 + 2r − 2n;a)

×
k∏

j=1

(
1 − it2(x∗

j − σ)
)−nj+1/2 dt.

6. CONCLUDING REMARKS

In this article we have studied some of the statistical im-
plications of the use of the N–IG process as an alternative to
the Dirichlet process. Both priors are almost surely discrete,
allow for explicit derivation of their finite-dimensional distri-
bution, and lead to tractable expressions of relevant quantities.
Their natural use is in the context of mixture modeling, where

they present remarkably different behaviors. Indeed, it has been
shown that the prior distribution on the number of components,
induced by the N–IG process, is wider than that induced by the
Dirichlet process. This seems to mitigate the influence of the
choice of the total mass a of the parameter measure. Moreover,
the mixture of N–IG process seems to be more aggressive in re-
ducing/detecting clusters on the basis of ties present in the data.
Such conclusions are, however, preliminary and still need to be
validated by more extensive applications, which will constitute
the object of our future research.

APPENDIX: PROOFS

A.1 Proof of Proposition 1

Having (3) at hand, the computation of (4) is as follows. One oper-
ates the transformation Wi = Vi(

∑n
i=1 Vi)

−1, for i = 1, . . . ,n − 1, and
Wn = ∑n

j=1 Vj. Some algebra and formula 3.471.12 of Gradshteyn and
Rhyzik (2000) leads to the desired result.

A.2 Proof of Proposition 2

In proving this result, we do not use the distribution of an N–IG
random variable directly. The key point is exploiting the indepen-
dence of the variables (V1, . . . ,Vn) used for defining (W1, . . . ,Wn).
Set V = ∑n

j=1 Vj and V−i = ∑
j �=i Vj, and recall that the moment-

generating function of an IG(α, γ ) distributed random variable is given

by E[e−λX] = e−a(
√

2λ+γ 2−γ ). As far as the mean is concerned, for
any i = 1, . . . ,n, we have

E[Wi] = E[ViV
−1]

=
∫ +∞

0
E[e−uV−i ]E[e−uVi Vi]du

=
∫ +∞

0
E[e−uV−i ]E

[

− d

du
e−uVi

]

du

= −
∫ +∞

0
e−(a−αi)(

√
2u+1−1) d

du
e−αi(

√
2u+1−1) du
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= αi

∫ +∞
0

(2u + 1)−1/2e−a(
√

2u+1−1) du

= αi

a

∫ +∞
0

− d

du
e−a(

√
2u+1−1) du = αi

a
= pi,

having applied Fubini’s theorem and theorem 16.8 of Billingsley
(1995). The variance and covariance can be deduced by similar ar-
guments combined with integration by parts and some tedious algebra.

A.3 Proof of Proposition 3

From Pitman (2003) (see also James 2002; Prünster 2002), we can
deduce that the predictive distribution associated with an N–IG process
with diffuse parameter α is of the form

P
(
Xn+1 ∈ ·∣∣X(n)

) = w(n) α(·)
a

+ 1

n

k∑

j=1

w(n)
j δX∗

j
(·),

with weights equal to

w(n) = a
∫
R+ une−a(

√
2u+1−1)µn1(u) · · ·µnk (u)µ1(u)du

n
∫
R+ un−1e−a(

√
2u+1−1)µn1 (u) · · ·µnk (u)du

and

w(n)
j =

∫
R+ une−a(

√
2u+1−1)µn1(u) · · ·µnj+1(u) · · ·µnk (u)du

∫
R+ un−1e−a(

√
2u+1−1)µn1(u) · · ·µnk (u)du

,

where µn(u) := ∫
R+ vne−uvν(dv) for any positive u and n = 1,2, . . . ,

and ν(dv) = (2πv3)−1/2e−v/2 dv. We can easily verify that µn(u) =
2n−1�(n − 1

2 )(
√

π [2u + 1]n−1/2)−1 and, moreover, that

∫

R+
un−1e−a(

√
2u+1−1)µn1 (u) · · ·µnk (u)du

= 2n−kea

(
√

π)k

{ k∏

j=1

�(nj − 1/2)

}∫ +∞
0

un−1e−a
√

2u+1

[2u + 1]n−k/2
du.

By the change of variable
√

2u + 1 = y, the latter expression is equal
to

2n−kea

(
√

π)k

{ k∏

j=1

�(nj − 1/2)

}
1

2n−1

∫ +∞
1

(y2 − 1)n−1e−ay

y2n−k−1
dy

= ea

2k−1(
√

π)k

{ k∏

j=1

�(nj − 1/2)

}

×
n−1∑

r=0

(
n − 1

r

)

(−1)n−1−r
∫ +∞

1

e−ay

y2n−k−2r−1
dy

= ea

2k−1(
√

π )k

{ k∏

j=1

�(nj − 1/2)

}

×
n−1∑

r=0

(
n − 1

r

)

(−1)n−1−ra2n−2−k−2r�(k + 2r − 2n + 2;a).

Now the result follows by rearranging the terms appropriately com-
bined with some algebra.

A.4 Proof of Proposition 4

According to the proof of Proposition 3, the joint distribution of the
distinct observations (X∗

1 , . . . ,X∗
k ) and the random partition coincides

with

α(dx1) · · ·α(dxk)
ea(−a2)n−1

ak2k−1 πk/2�(n)

{ k∏

j=1

�

(

nj − 1

2

)}

×
n−1∑

r=0

(
n − 1

r

)

(−a2)−r�(k + 2 + 2r − 2n;a).

The conditional distribution of the vector (k,n1, . . . ,nk), given n, can
be obtained by marginalizing with respect to (X∗

1 , . . . ,X∗
k ), thus yield-

ing

ea(−a2)n−1

2k−1πk/2�(n)

{ k∏

j=1

�

(

nj − 1

2

)}

×
n−1∑

r=0

(
n − 1

r

)

(−a2)−r�(k + 2 + 2r − 2n;a). (A.1)

To determine p(k|n), one needs to compute

∑

(∗)

k∏

j=1

�

(

nj − 1

2

)

,

where (∗) means that the sum extends over all partitions of the set of
integers {1, . . . ,n} into k komponents,

∑

(∗)

k∏

j=1

�

(

nj − 1

2

)

= πk/2
∑

(∗)

k∏

j=1

(
1

2

)

nj−1

=
(

2n − k − 1
n − 1

)
�(n)

�(k)
22k−2n,

where, for any positive b, (b)n = �(b + n)/�(b), and the result fol-
lows.

A.5 Proof of Proposition 5

Let �m = {Am,i : i = 1, . . . , km} be a sequence of partitions con-
structed in a similar fashion as was done in section 4 of Regazzini et al.
(2003). We accordingly discretize α by setting αm = ∑km

i=1 αm,i δsm,i ,
where αm,i = α(Am,i) and sm,i is a point in Am,i. Hence, whenever
the jth element in the sample Xj belongs to Am,ij it is as if we ob-
served sm,ij . Then, if we apply proposition 3 of Regazzini et al. (2003),
some algebra leads to express the posterior density function for the dis-
cretized mean as (14) and (15) with

ψm(σ ) = −Cm
(
x(n)

)ea2n−k

√
π

k

( k∏

j=1

αm,ij�(nj − 1/2)

)

×
∫ +∞

0

(
tn−1e−∑km

j=1

√
1−it2(sj−σ)αm,j

)

×
( k∏

r=1

[(
1 − it2

(
sir − σ

))nr−1/2

+ gm
(
αm,ir , sm,ir , t

)]
)−1

dt, (A.2)

where Cm(x(n))−1 is the marginal distribution of the discretized sam-
ple and gm(αm,ir , sm,ir , t) = O(α2

m,ir
) as m → +∞, for any t. On the

basis of proposition 4 of Regazzini et al. (2003), one could use the
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previous expression as an approximation to the actual distribution, be-
cause it converges almost surely, in the weak sense, along the tree of
partitions �m. But in the particular N–IG case, we are able to com-
pute Cm(x(n))−1 by mimiking the technique used in Proposition 1 and
exploiting the diffuseness of α. Thus we have

Cm
(
x(n)

)−1 = ea2n−k

(n − 1)!√π
k

( k∏

j=1

αm,ij�(nj − 1/2)

)

×
∫

(0,+∞)

un−1e−a
√

2u+1

∏k
r=1[[1 + 2u]nr−1/2 + hm(αm,ir ,u)] du,

where hm(αm,ir ,u) = O(α2
m,ir

) as m → +∞, for any u. Insert the pre-
vious expression in (A.2) and simplify. Then apply theorem 35.7 of
Billingsley (1995) and dominated convergence to obtain that the limit-
ing posterior density is given by (14) and (15) with

ψ(σ) = − (n − 1)! ∫ ∞
0 tn−1e− ∫

R

√
1−it2(x−σ)α(dx)

∫ +∞
0 un−1e−a

√
2u+1(

√
2u + 1 )−n+k/2 du

×
k∏

j=1

(
1 − it2(x∗

j − σ)
)−nj+1/2 dt.

Now arguments similar to those in the proof of Proposition 3 lead to
the desired result.

[Received February 2004. Revised December 2004.]
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