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Introduction

At the outset, we would like to thank all the authors that have contributed to this volume. This
book is dedicated to a statistician whose work in Bayesian statistics has forever changed the way
in which statistical research and practice has been and will be carried out. Adrian Smith’s accom-
plishments are documented at the end of this volume. Here, we simply note that three key ideas in
this volume—hierarchical models, Markov chain Monte Carlo and sequential Monte Carlo—that
have revolutionized Bayesian statistics are in large measure due to Adrian’s contributions. These
concepts are now ubiquitous wherever Bayesian models are used. In this volume, we have selected
broad topic areas where these ideas come into play in a signi0cant manner. Of course these topics
are by nomeans exhaustive, but they serve to illustrate the impact that Adrian’s research has had on
Bayesian statistics in the last four decades or so.

When we conceived this volume, we wanted to position it somewhat di1erently from other
tribute volumes. To accomplish this, based on our collective experiences, we felt that some of the
basic ideas in modern Bayesian statistics with which Bayesian statisticians are familiar are foreign
to some (if not many) colleagues and practitioners in other disciplines. Therefore, we felt that a
volume that had a ‘Bayesian textbook’ 2avour to it, and which also included application papers
would prove useful in spreading modern Bayesian ideas. This is the modus operandi adopted in
most of the chapters. We now discuss each part in turn.

Part I: Exchangeability Dawid and Goldstein explore the fundamental notion of Bayesian
statistics, namely exchangeability.

Part II: Hierarchical Models The 0rst key idea in modern Bayesian statistics is hierarchical
models. Gelfand and Ghosh discuss the elementary ideas underlying such models. This is then
followed up by Chakraborty, Mallick and Ghosh, and Kottas and Fronczyk’s papers.

Part III: Markov Chain Monte Carlo The second key idea in modern Bayesian statistics is
Markov chain Monte Carlo (MCMC). Chib reviews the key MCMC approaches to implement-
ing full Bayesian analysis. Gri/n and Stephens’ contribution further describes and exempli0es
advancedMCMC notions.

Part IV: Dynamic Models West describes the fundamentals of dynamic linear and nonlinear
models. Papers by Gamerman and Salazar, and Huerta and Stark elaborate on these ideas via some
novel applications.

Part V: Sequential Monte Carlo Carvalho and Lopes describe the use of SMC in a variety of
Bayesian models, which is then followed up by an applications paper by Sales, Challis, Prenger and
Merl.

Part VI: Nonparametrics Bayesian nonparametrics is embedded in the exchangeability ideas
found inPart I.Walker discusses Bayesian nonparametricmodels and argues that to performproper
data analysis one must adopt nonparametric models at the outset. Two papers, one by Karabatsos
andWalker, and the second byMéna complete this part.

Part VII: Spline Models and Copulas Part VI considers Bayesian nonparametrics using
exchangeability as the basis. There are related approaches to nonparametrics but with some key
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di1erences. Two such classes of models are discussed in this part: Bayesian splines by Wood, and
Bayesian copulas by Smith.

PartVIII:ModelElaboration andPriorDistributionsBayarri andBerger describe the funda-
mentals of Bayesian hypothesis testing, followed by three research papers by Draper; Liu, Windle
and Scott; and Gutiérrez-Peña andMendoza.

Part IX: Regressions and Model Averaging Chipman, George and McCulloch describe the
correct way of doing regressions. This is further elaborated on in two papers by Clyde and Iversen,
and Gramacy.

PartX:Finance andActuarial Science Jacquier andPolson discuss the role of Bayes in 0nancial
applications.This is followedby a comprehensive reviewofBayesianmodels in corporate0nanceby
Korteweg.One area where Bayesianmethods are only now beginning to gain popularity is actuarial
science. Makov describes Bayesian models in this context.

Part XI: Medicine and Biostatistics It is safe to say that Bayesian methods have found most
widespread use in biostatistics and bio-informatics. Mueller details the Bayesian models in these
areas, followed by two key papers in biostatistics by Laud, Müller and Sivaganesan, and Hanson
and Jara.

PartXII: InverseProblemsandApplicationsThis is an exciting areaof sciencewhereBayesian
methods are fast gaining in popularity. Fox, Haario and Christen provide a complete description of
Bayesian ideas in this 0eld, followed by two practical papers: one by Kaipio and Kolehmainen, and
a second by Nakhleh, Higdon, Allen and Ryne.

Special thanks to Carlos Carvalho, Marcin Kacperczyk, Bani Mallick, Tom Shively, and Daniel
Zantedeschi for helping review some of the papers.

Finally, we would like to thank Clare Charles, Elizabeth Hannon, Keith Mans0eld, Viki Mor-
timer, Subramaniam Vengatakrishnan and their colleagues at Oxford University Press for their
tireless e1orts in ensuring that this book was completed in a timely and e/cient manner.
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1 Observables and models:
exchangeability and the
inductive argument

3456789 :u9y;+84=

1.1 Introduction

When quantifying uncertainty for large and complex systems, it is often considered helpful
to regard such uncertainty as being of two kinds, epistemic and aleatory. Epistemic uncer-

tainty is that which relates to our lack of knowledge, and could be reduced by receipt of further
information. Aleatory uncertainty is that which relates to intrinsic chance variation in the system,
and cannot be resolved except by direct observation. The distinction between aleatory and epis-
temic uncertainty is informal rather than precise, particularly within the view that all uncertainty
stems from a lack of knowledge and understanding. Indeed, a basic activity in much of science is
searching for explanatory structure within apparently random events, which corresponds to mov-
ing uncertainty from the aleatory to the epistemic form, where it can be better understood and,
possibly, reduced.

The aleatory/epistemic distinction has a natural counterpart in much statistical analysis, where
aleatory uncertainty is expressed through the likelihood function for the data given the population
parameters, while epistemic uncertainty is expressed through the prior distribution over the param-
eters, within the Bayesian formulation, and is treated less formally within relative frequency based
approaches. This division between uncertainmodel parameters and likelihoods conditional on the
values of the parameters is helpful and constructive when modelling our uncertainty about a phys-
ical system. However, as with any other form of modelling, this does raise fundamental questions
when we seek to apply the results of the model based analysis to actual real world inferences. All
that we actually observe are individual measurements of real things. The parametric forms that we
introduce to describe intrinsic chance variation are simplymodels whosemeaning and justi0cation
remains to be established.

Within the subjectivist approach, there is a precise answer to the question of meaning for many
statistical models. This meaning is rooted in the judgement of exchangeability. Exchangeability
allowsus to construct parametric statisticalmodels purely on thebasis of theuncertainty statements
that wemake about observable random quantities. Indeed, inmany cases, the argument shows that
we have no choice but to behave as though we consider that we are sampling from a parametric
model (the aleatory uncertainty) given the true but unknown values of some population distribu-
tion (the epistemic uncertainty). Therefore, exchangeability is the logical bedrock to a large part of
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current statistical analysis. Beyond this, the distinction between aleatory and epistemic uncertainty
pervades so much of current scienti0c analysis that the notion of exchangeability is a necessary
conceptual tool to provide the underpinnings of meaning for uncertainty quanti0cation in general
and the inductive argument, namely the reasoning from particular cases to general principles, in
particular.

Our aims in this chapter are two-fold. Firstly, we shall give an elementary and self-contained
account of the notion of exchangeability and the derivation of de Finetti’s representation theorem,
which shows howwemay construct operational statistical models based strictly on our judgements
over observables. Secondly, we shall consider the relevance of this representation to real world
inferences, and introduce a second collection of exchangeability judgements which are necessary
in order that the inductive argument, when applied to inferences over models so constructed, also
has an operational real world counterpart.

1.2 Finite population sampling

Finite population sampling gives a concrete illustration of the distinction between aleatory and
epistemic uncertainty. Consider a simple version of this problem.We have a bucket, which contains
a known largenumber,N, of counters, ofwhich anunknownproportionq are red, and the remaining
proportion (1 ! q) are blue. We intend to draw a counter at random from the bucket. (Here, and
below, we use the term ‘at random’ as shorthand for the subjective judgement that each counter
currently in the bucket is equally likely to be selected at each stage.) Let Z = 1 if this draw is red,
and let Z = 0, otherwise. We are uncertain as to the value that Z will take. This uncertainty has
two components. Firstly, we do not know the value of q. This is epistemic uncertainty. It can be
quanti0ed by consideration of what we know about the way that the population was formed, and
will be further reduced ifwe take samples from the bucket.Di1erent peoplewill have di1erent states
of knowledge and so their epistemic uncertainty may di1er. Secondly, even if we did know q, we
still would not know the value of Z. This value would now be the realization of a Bernoulli random
variable, parameter q, and this irreducible uncertainty is aleatory. The distinction between aleatory
and epistemic uncertainty is most useful when there is a general consensus as to the representation
of aleatory uncertainty, e.g. here, to the extent that there is general agreement that the draw from
the bucket will be random, and no obvious way to impose more structure upon this variation.

The possible values of q are qi = i/n, i = 0, 1, . . . ,N. In the subjective Bayes view,wemay quan-
tify our epistemic uncertainty for q by specifying our collection of probabilities pi = P(q = qi).
Therefore, we can assess our probability that Z = 1, by the law of total probability, as

P(Z = 1) =
N⎨

i=0
piqi (1.1)

A useful way to rewrite ((.() is

P(Z = 1) =
⎩ 1

0
q dF(q) (1.2)

where F is the probability measure on [%,(] which assigns probability pi to the point i/N.
Now suppose, instead, that we are going to take a random sample of size n, without replacement,

from the bucket. Let X denote the number of red counters in the sample. Epistemic uncertainty is
as before. Our aleatory uncertainty relates to the probability distribution for X if we know q, the
proportion of red counters in the bucket. This distribution is hypergeometric, so that
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P(X = k|q) =
⎫Nq
k
⎬⎫N(1!q)

n!k
⎬

⎫N
n
⎬ (1.3)

Therefore, the corresponding version of ((.k) is

P(X = k) =
⎩ 1

0

⎫Nq
k
⎬⎫N(1!q)

n!k
⎬

⎫N
n
⎬ dF(q) (1.4)

If n is small compared to N, then there is little di1erence between sampling with and without
replacement, and so, approximately, we can rewrite ((.)) as

P(X = k|q) ≈
⎭
n
k

)
qk(1 ! q)(n!k) (1.5)

so that ((..) may be approximated as

P(X = k) ≈
⎩ 1

0

⎭
n
k

)
qk(1 ! q)(n!k) dF(q) (1.6)

Representation ((.b) is familiar in the Bayesian context, and is often described by saying that X has
a binomial likelihood, parameters n, q, where our prior measure for q is given by F. In the above
examples, F was a discrete measure placing probabilities on each value i/N. As N increases, it is
often helpful to approximate this discrete measure by a continuous pdf f (q), so that

P(X = k) ≈
⎩ 1

0

⎭
n
k

)
qk(1 ! q)(n!k)f (q) dq (1.7)

For example, most introductory treatments for Bayesian statistics deal with ((.z) by discussing the
special case where f (q) is a beta distribution, as this case has simplifying conjugacy properties.
However, in our development, it is helpful to retain the possibility that F could have any form at
all; for example F could be a mixture of discrete and continuous components if there were certain
special choices for q. (Suppose, for example, that our bucket had been chosen by a coin 2ip between
two buckets, for one of which we knew that q was %.-, but we had no information about the value
for q in the other bucket.)

Aswe increase the size ofN as compared to n, the approximation ((.-), and so also ((.b), becomes
increasingly precise. We can see this informally as ((.-) would be exact if we were sampling with
replacement, and only removing a small number of counters from a large bucket will only change
the proportion of red counters by a small amount. We can support this intuition by showing that
the right-hand side of ((.)) tends uniformly to the right-hand side of ((.-) withN; for example, the
most extreme change to the proportions in the bucket is to draw all counters of the same colour, and
for anyN, q and n < Nq, the probability of n successes when sampling without replacement is less
than the probability when samplingwith replacement, but greater than the probability for sampling
with replacement if we 0rst remove n red counters from the bucket, so that

(
q ! f
1 ! f

)n ≤ P(X = n|q) ≤ qn

where f is the sampling fraction f = n/N, and so the approximation is very close for f near zero.
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We have described this sampling problem from a Bayesian viewpoint. In the common situation
where we have a large sample, n, from amuch larger population,N, most inferential approaches will
reach the same conclusion, namely that the proportion of red counters in the sample estimates the
population proportion with high accuracy.When the sampling fraction f is not small, wemust take
more care in approximating the hypergeometric distribution, and if n is small, then our representa-
tion of epistemic uncertainty through F will be important. However, in all cases, themeaning of the
analysis will be clear, in the sense that there is a true but unknown population parameter q, which is,
in principle, observable, and a generally agreed aleatory description as to how the sample is drawn,
given q.

Most statistical problems lack this logical bedrock. For example, if we spin a coin repeatedly, and
would like to use our observed spins to revise our judgements about future spins, thenwemight rep-
resent our uncertainty bymeans of amodel inwhich, given the value of q, the ‘the true but unknown’
value of the probability that the spun coin will land heads, the coin spins are independent Bernoulli
variables with parameter q. This model is formally similar to the 0nite population problem that we
have been discussing, but with the fundamental distinction that the quantity q over which we now
express our uncertainty is only amodel quantity, which is not observable even in principle and lacks
even a real world de0nition. However, there is a bridge between such uncertainty models and the
problem of 0nite population sampling and this comes through the concept of exchangeability, as
we shall now describe.

1.3 Exchangeable samples

In the problem of sampling counters from the bucket that we described above, consider making
an ordered series of draws, X1,X2, . . . ,XN from the bucket, without replacement, where Xi = 1
if the ith draw is red, Xi = 0 otherwise. For us, the sequence is not independent. Observing each
draw alters both the aleatory uncertainty (each timewe observe a red counter, then this reduces the
proportion of red counters available for the next draw) and the epistemic uncertainty (each time
we observe a red counter, this changes our state of knowledge about the true proportion of red
counters in the bucket). However, the sequence does have certain probabilistic properties which
are important for the general account that we shall develop.

Consider 0rst a single drawXi. For each draw i, given the initial proportion q of red counters, the
probability of drawing a red counter is the same, namely q, as, on each draw, each individual counter
has the same probability of being selected. Therefore, eachXi has the same probability distribution,
namely Bernoulli, with parameter given by ((.k). Now consider any pair of draws, Xi,Xj. Given q,
the ith draw has probability q of being red. If the ith draw is red, then the jth draw is a random draw
from a bucket, sizeN ! 1, with qN ! 1 red counters. Therefore, the probability distribution of the
number of red counters in two draws is given by ((..), for the case where n = 2, and this is true for
all pairs i ◦= j. Continuing in this way, we have that the probability distribution of any collection of n
elements (Xi1 , . . . ,Xin) from the series has the sameprobability distribution, howeverwe select and
permute the indices i1, . . . , in, as given by ((..). This notion, that the probability distribution of any
collection of n of the quantities depends only on the value of n, and not on the individual quantities
selected, or the order in which they are arranged, is termed exchangeability and is fundamental to
the subjectivist representation for epistemic and aleatory uncertainty.

Whilewehaveonly discussed simple two-valued scalar quantities so far, the concept of exchange-
ability is quite general. We make the following de0nition.

De!nition A sequence (Y1, Y2, . . .) of random vectors Yi = (Yi1, Yi2, . . . , Yim) taking values in some
space χ is said to be exchangeable if the joint probability distribution of each subcollection of n
quantities (Yi1 , Yi2 , . . . , Yin) is the same.
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In our account of picking counters from the bucket, we deduced exchangeability of the sequence
of selections from our views as to the physical description of the problem. The notion of exchange-
ability reverses the logic of this argument and allows us to deduce the structure of the problem
directly from the judgement of exchangeability. This is usually termed de Finetti’s representation
theorem for exchangeable sequences. We will introduce this representation by discussing the
example of spinning coins and then use a more general form of this argument to give the general
form for the theorem. Our account builds on the treatment in [(%].

1.4 The representation theorem for exchangeable binary
sequences

Suppose that we spin a coin repeatedly. The familiar model, which treats coin spins as independent
Bernoulli random variables each with a true but unknown probability q of landing heads, lacks
an operational physical basis. However, we can retrieve a version of this model if we make the
judgement that the coin spins are exchangeable.

Let Ui = 1 if the ith spin is heads, Ui = 0 otherwise. Suppose that we view the sequence
(U1,U2 . . .) as exchangeable. To simplify our account, we will treat this sequence of coin spins as,
in principle, in0nite, whichwe can informally interpret as saying that we are able to consider as large
a number of spins aswe needwhenwe construct our uncertainty judgements over the outcomes. (If
we are restricted to a 0nite exchangeable sequence, then the results that we obtain will correspond
to those deducible from 0nite population sampling, see for example, [)].)

Consider the following thought experiment. Imagine that we have an empty bucket, and a pile
of counters, numbered, sequentially, ( toN. Consider spinning the coinN times.We shall mark the
outcome of the ith spin on the ith counter, so each counter is either marked ( or %. Each counter is
added to the bucket.

As the spins are exchangeable, we must assign the same probability, q say, to the event that the
0rst spin is heads, i.e. thatU1 = 1, as we do to the event that a randomly chosen counter from the
bucket has value ( (as the probability that the randomly chosen counter has value ( is the average
of the probabilities that each counter has value (, which, by the exchangeability judgement, must all
be equal to q). Again we may make a division into a notional epistemic uncertainty as to the value
of the proportion of counters marked ( in the bucket and an aleatory uncertainty for the value on
the single counter that we pick, given this proportion. Therefore the probability, for the randomly
selected counter in the thought experiment, can be constructed as in ((.(), by 0rst considering the
possible values qi = i/N, i = 0, 1, . . . ,N for the proportion of counters labelled (, in the bucket,
and assigning probabilities pi to the outcomes for q as above. We have

P(U1 = 1) =
⎩ 1

0
q dFN(q) (1.8)

in the same way, where FN assigns probability pi to point i/N.
We can extend this argument to our judgement about the outcome of n tosses in the same way.

IfWn is the number of heads in the 0rst n spins, then our probability for observingWn = k is the
same as the probability that we assign for this event in any sample of n spins, and so this probability
must be equal to the probability of drawing k counters labelled ( from the bucket in n randompicks,
which, by relation ((..), is given, ∀N ↑ n, as

P(Wn = k) =
⎩ 1

0

⎫Nq
k
⎬⎫N(1!q)

n!k
⎬

⎫N
n
⎬ dFN(q) (1.9)
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The simplest way to consider what happens as N increases is to invoke Helly’s theorem (see, for
example, [.], which also contains an insightful discussion of exchangeability) and a quite di1erent
derivation of the exchangeability representation theorem), which states that any in0nite sequence
of probability distributionsGN on a bounded interval contains a subsequence which converges in
distribution to a limit, sayG.

(Helly’s theorem is a consequence of the result that any in0nite sequence of numbers a1, a2, . . .
on a bounded interval has a uniformly convergent subsequence. The result for number sequences
can be shown as follows, where we suppose all numbers lie in [%,(]. Divide the sequence into ten
subsequences, according to the 0rst decimal place. At least one subsequence must be in0nite. Keep
one such subsequence and discard the rest. Let b1 be the element ai1 with the smallest subscript
in this subsequence. Now divide this subsequence into ten subsequences according to the value of
the second decimal place. At least one subsequence must be in0nite. Keep one such subsequence
and discard the rest. Let b2 be the element ai2 with the smallest subscript in this subsequence with
i2 > i1. Continue in this way and the sequence b1, b2, . . . converges uniformly to a limit, as all
values bj, bj+1, . . . agree in the 0rst j decimal places, for each j. Helly’s theorem follows by repeated
applicationof thismethod.We0rst select an in0nite subsequenceof probability distributionswhich
agree in the 0rst decimal place for the probabilities that they assign to the intervals [0, 0.5) and
[0.5, 1]. From this subsequence, we select a subsequencewhich agrees to two decimal places for the
probability assigned to intervals [0, 0.25), [0.25, 0.5), [0.5, 0.75), [0.75, 1] and so forth. Choosing
an element from each subsequence constructed in this way, we arrive at Helly’s theorem.)

Applying Helly’s theorem to the sequence FN , there is a subsequence which converges in dis-
tribution to a limit F. Letting N tend to in0nity, FN tends to F and the hypergeometric integrand
tends uniformly to the binomial, so that we have, for each k, n

P(Wn = k) =
⎩ 1

0

⎭
n
k

)
qk(1 ! q)(n!k) dF(q) (1.10)

((.(%) is de Finetti’s theorem for an in0nite exchangeable sequence of binary outcomes, derived in
[(]. The uniqueness of the distribution F satisfying ((.(%) follows as a probability distribution on a
bounded interval is uniquely determined by its moments: this is the Hausdor1 moment problem
(see [.] which contains a direct derivation of the exchangeability representation theorem based
on this property). The theorem shows that the judgement of exchangeability, alone, is su/cient to
ensure that our beliefs about the sequence are just as if we consider that there is a true but unknown
quantity q given the value of which we view the sequence as a series of independent Bernoulli trials
with probability q.

The convergence of the sequence FN to F is uniform, as for any N1 < N2 < N3 we may view
FN1 , FN2 respectively as the distribution of q in buckets formedbydraws of sizeN1,N2 respectively
from a bucket formed byN3 spins of the coin, so that FN2 will be probabilistically closer than FN1
to FN3 , corresponding to the intuition that there are no features of a population that are better
estimated by a small sample than by a large sample. In this way, we see that the exchangeability
representation ((.(%) is really a statement about our judgements over large 0nite collections of coin
spins We invoke in0nity simply to allow us to make a continuous approximation to the discrete
process, to any order of accuracy that we require.

Notice, in particular, that we have constructed the measure F(q) as the limit of the measures
FN(q), namely the measures for the proportion of heads, q[N] in the 0rstN tosses. This is another
way of saying that the relative frequencies q[N] tend to a limit q in distribution. This is the subjec-
tivist formulation of the notion of limiting relative frequency. The relative frequency approach to
statistics uses the limiting relative frequency as the de0nition for the notion of probability but is
unable to give a proper justi0cation for this de0nition, or even a satisfactory explanation as to the
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way in which the limit should be understood. In contrast, the subjectivist approach constructs the
limiting relative frequency as a subjective judgementwhich is implied by subjective exchangeability
judgements over the sequence and deduces the limit as a necessary consequence of this judgement.

1.5 The general form for the exchangeability representation

The argument of the preceding section relates to coin spins, but it applies similarly to any in0nite
random exchangeable sequence of vectors, (Y1, Y2, . . .), over a spaceχ. Just as before, we carry out
the thought experiment of constructing a bucket withN counters, where the ith counter is marked
with the value of Yi. LetQN denote the empirical distribution of the counters in the bucket, so that
QN assigns probability 1/N to the value on each counter. As the sequence Y is exchangeable, the
0rst value, Y1, has the same probability distribution as a draw according to the distribution QN .
Therefore, we can split up our uncertainty as to the outcome of Y1 into two parts. Firstly, we are
uncertain as to the distributionQN , and secondly, givenQN , we are uncertain as to the value of the
observation Y1. Denote our probability distribution forQN by FN (so FN assigns probabilities for
all possible empirical distributions consisting ofN selections from the spaceχ). Then, analogously
to ((.,), we have, for any A1 ↓ χ,

P(Y1 ↓ A1) =
⎩

QN(A1) dFN(QN) (1.11)

whereQN(A1) is the probability assigned to A1 by the distributionQN (i.e. the proportion of the
0rstN outcomes that are within A1).

Now consider our probability distribution for the 0rst n outcomes (Y1, Y2, . . . , Yn). We can
assess this distribution in two stages as above. First, we make a random choice for the empirical
distributionQN according to FN . Given the choice ofQN , we nowmake n draws, without replace-
ment, from the bucket consisting of N counters with this empirical distribution. We can evaluate
this distribution exactly by a counting argument. If n is small compared to N, then each draw will
only change the composition of the remaining counters in the bucket by a small amount, so that the
draws will be almost independent. Therefore, we have that

P(Y1 ↓ A1, . . . , Yn ↓ An) ≈
⎩

QN(A1) . . .QN(An)dFN(QN) (1.12)

Aswe letN increase, keeping n 0xed, the exact formof the integrand in ((.(k) tends uniformly to the
product integrand.ThedistributionFN tends to a limiting distributionF over the probability distri-
butionsQ over the spaceχ. (The details of the limiting argument are technicallymore complicated
than for the coin2ips, due to the generality of the formulation, but the argument is the same, namely
that the empirical distribution of a large sample, sizeN, from amuch larger population, sizeM say, is
close to the population distribution, by the standard arguments of 0nite population sampling, and
therefore the sequence of distributions FN must converge.)

Proceeding in this way, we have the generalization of de Finetti’s result given by Hewitt and
Savage, [((], which is as follows.

Theorem Let (Y1, Y2, . . .) be an in!nite exchangeable sequence of random quantities with values inχ.
Then there exists a probability measure F on the set of probability measures Q (χ) on χ, such that,
for each n, and subsets A1, . . . ,An ofχ,
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P(Y1 ↓ A1, . . . , Yn ↓ An) =
⎩

Q (A1) . . .Q (An)dF(Q ) (1.13)

F is the limiting distribution of the empirical measure, i.e. the probability assigned to any setA by F
is given by the limit of the probability assigned to the proportion of the 0rstN trials whose outcome
is in A.

The exchangeability representation theorem is both surprising and prosaic. It is surprising, in
the sense that the simple and natural symmetry judgement of exchangeability over observable
quantities leads to such a strong result, namely that our beliefs must be as though we considered
thatweweremaking independent draws froma ‘true but unknown’ distributionQ forwhichwehad
assigned a prior measure F. This can be thought of as a version of the separation of our uncertainty
into aleatory and epistemic components. Observation of a sample Y[n] = (Y1, . . . , Yn) reduces
our uncertainty about future elements of the sequence by applying the Bayes theorem to the prior
measure F to update judgements aboutQ , as

P(Yi1 ↓ A1, . . . , Yim ↓ Am|Y[n]) =
⎩

Q (Ai1 ) . . .Q (Aim )dF(Q |Y[n]) (1.14)

for all subsets A1, . . . ,Am ofχ, and indices i1, . . . , im all greater than n. Increasingly large samples
tend to a ‘relative frequency limit’ eventually resolving all of our epistemic uncertainty, leaving the
unresolvable aleatory uncertainty as to the outcomes of future draws from a known distribution, a
posteriori. Compared to the conceptual confusion at the heart of traditional descriptions of statisti-
cal inference, this formulation is clear, unambiguous and logically compelling, building everything
on natural belief statements about quantities which are, in principle, observable. The theory of
exchangeability is rich and elegant and also of great practical and conceptual importance. This
article has only focused on the most basic form for the representation. A characteristic example of
the type of results that followwhenwe imposemore structure on the exchangeability speci0cations
is [(k]whichderives the additivemodel for log-odds in a twoway table fromnatural exchangeability
statements over rows and columns. (The discussion following that article contains some comments
fromme on the links between this result and the types of limiting 0nite population representations
that we have described above.)

However, the representation theorem is also prosaic, as the population distribution is nothing
more than the outcomes of all the possible future observations in the sequence, and the division
into aleatory and epistemic components of uncertainty based on this structuring is just a partition-
ing of our judgements about such future observations. The bucket representation simply gives a
concrete form to this identi0cation with 0nite population sampling, and makes clear the role of
exchangeability judgements in equating the observation of the members of the sequence with the
random samples from the bucket.

1.6 Expectation as primitive

While the exchangeability representation is highly revealing, the real world implementation of the
representation faces two di/culties, one in the construction of the representation and one in its
inferential application.

The 0rst di/culty is implicit in the derivation that we have described for the representation
theorem. To construct the measure F in representation ((.()), we need to be able to quantify
our beliefs for the outcome of the thought experiment comprising the composition of the large
bucket with counters indexed by the vector outcomes of the 0rst N members of the sequence.
Specifying prior beliefs over the possible choices for this collection is both scienti0cally di/cult,



Observables and models 11

as we must consider questions at a level of detail beyond our ability to give scienti0cally meaning-
ful answers, and technically di/cult, because of the complexity of the objects over which we are
aiming to develop a meaningful probabilistic representation. Therefore, one of the key advantages
of the exchangeability representation, namely that it provides a method for us to restrict our belief
statements to those related to observable quantities, in practice is usually unfeasible, and so the
representation is rarely used in this way.

The second di/culty is as follows. The representation theorem appears to retrieve for us the
familiar division into epistemic and aleatory uncertainties, but this division is itself based on an
epistemic judgement, which is therefore subject to revision.We aim to use relation ((.(.) to update
beliefs about future outcomes given a current sample Y[n] by constructing the update F(Q |Y[n]),
and then deriving beliefs over future outcomes with respect to this distribution. However, the
meaning that we ascribe to F(Q ) only holds for as long as we judge the sequence as exchangeable.
We may change this judgement at any time. Bayesian statistics describes how to make inferences
about quantities which have true but unknown values. There is no provision within the Bayesian
approach (or any other approach to inference that I know of) for making operationally meaningful
inferences about quantities which, at the time when we come to make the inference, may simply
cease to exist.

Whatweneed is both to simplify the speci0cation requirements for the exchangeability represen-
tation, so thatwemayuse it inpractice, aswell as inprinciple, andalso to sharpenour formulation for
inference tomake sense of the issues raisedwhenwemake conditioning statements over evanescent
quantities. Wemay address the 0rst issue by changing the primitive for our theory from probability
to expectation. To address the second issue requires us to augment our collection of exchangeability
speci0cations, in ways that we shall describe below.

These are larger issues thanwe can do justice to in the space of this article. All thatwewill do here
is to sketch the key steps that we must take to establish an operational meaning for our inferences
over exchangeable quantities, building on ideas 0rst outlined in [b] and [z].

Firstly, we shall discuss a simpler formof exchangeability, based on a di1erent choice of primitive
for the theory. Typically, the primitive of choice for the subjectivist theory is probability, but this is
largely for historical reasons and to align the theory as closely as possible with its non-subjectivist
counterparts.However,wedohave a choice andwecan, instead, choose expectation as theprimitive
for quantifying uncertainty. With this choice, we can make as many, or as few, expectation judge-
ments aswewish, when treating a problemof uncertainty, including asmany probability statements
as we wish—these are simply expectation statements for the corresponding indicator variables.
However,whenprobability is the primitive,wemustmake all possible probability statements before
we can make any expectation statements. (For this reason, expectation was de Finetti’s choice of
primitive for the theory and the work which best summarized his views, [k], is actually a theory of
expectation or, as he terms it, prevision.)

This is not an issue for non-subjectivist approaches—the probabilities all somehow exist sep-
arately from us and it is simply our task to learn about them. In the subjectivist theory, we are
muchmore involved. Each uncertainty is a statement that wemake, expressing our best judgements
as to the likely outcomes. This is exactly the problem that we identi0ed with the exchangeability
representation. We need to specify so many probability judgements over observable quantities
before we can construct the representation theorem that it is rarely used in this way. The theorem
is drained of much of its power by the excessive demands of the probabilistic formalism. We shall
now describe the second order version of the representation theorem, which does not su1er from
this problem.

De Finetti makes expectation primitive under the operational de0nition in which E(X) is the
value of x that you would choose if confronted with the penalty

L = k(X ! x)2
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where k is a constant de0ning the units of loss and the penalty is paid in probability currency (i.e.
tickets in a lottery with a single prize). The value of E(X) is chosen directly, as a primitive, as is
probability in the standard Bayesian account. De Finetti shows, under this de0nition, that E(X)

satis0es the usual properties of expectation, such as linearity. With this penalty scale, expectations
are consistent with preferences, in the sense that preferring penaltyA toB is equivalent to assigning
E(A) < E(B), as expectation for the penalty is equal to the probability of the reward.

Bayes linear analysis is a version of Bayesian analysis which follows when we take expectation
as primitive; for a detailed account, see [*]. The particular features that are of concern for this
article are the practical alternative for the exchangeability representation, which can actually be
speci0ed by judgements over observables in practice as well as in principle, and the linkage between
this representation and an operationally meaningful form of inference for the evanescent model
quantities expressed through the representation theorem. This formalism allows us to address the
twin concerns that we have raised about current approaches to statistical induction (and we know
of no alternative approach for so doing).

1.7 Second-order exchangeability representation theorem

We say that the sequence of random vectors X1,X2, . . ., where Xj = (X1j, . . . ,Xrj), is
Second-Order Exchangeable (SOE), if each vector has the same mean and variance matrix and
all pairwise covariance matrices are the same, i.e. if

E(Xi) = µ, Var(Xi) = ", Cov(Xi,Xj) = #, ∀i ◦= j (1.15)

Wesuppose that all quantities in ((.(-) are0nite.Wemay separate our uncertainty about eachXi into
aleatory and epistemic components, with corresponding second order speci0cations, according to
the following representation theorem, derived in [-].

Theorem (Second-order exchangeability representation theorem) If X1,X2, . . . . is an in!nite
Second-Order Exchangeable sequence of random vectors, then, for each i,

Xi = M(X) ˘ Ri(X) (1.16)

whereR1(X),R2(X), . . . is amutually uncorrelated second-order exchangeable sequence, eachwith
mean zero and uncorrelated withM(X).

(The notationU ˘ W expresses the condition that all of the elements of the vectorU are uncorre-
lated with all of the elements of the vectorW .)

The proof of the representation theorem is similar to that for the full exchangeability represen-
tation. Our thought experiment is to construct a bucket containing N counters, marking the ith
counter with the outcome for the ith case. Instead of considering thewhole probability distribution
of the counters in thebucket,we consider a single quantity, the averageof the counters in thebucket,
XN = (X1N , . . . ,XrN)where

XN = 1
N

N⎨

i=1
Xi

For the general exchangeability representation, we construct the population distribution from our
beliefs relating to the limit of the sample distributions. For the second order theorem, we construct
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the population mean M(X) from our limiting beliefs about the sample means. We can do this
because, from the speci0cations ((.(-), the sequence Xi is a Cauchy sequence in mean square, as
for n < m and each i,

E((Xim ! Xin)2) = (
1
n

! 1
m

)("i ! #i) (1.17)

where "i,#i are the ith diagonal terms of ",#. Therefore the sequence Xn tends to a limit, and
this limit is the mean quantityM(X). The properties of the sequenceRi(X) follow by evaluating
Cov(Ri(X),M(X)) as the limit of terms Cov(Xi ! Xn,Xn) and checking that this limit is zero,
and similarly for Cov(Ri(X),Rj(X)).

We can formalize the construction of this limit, treating expectation as primitive, by constructing
the inner product space I(X)whose vectors are linear combinations of all of the elementsXij, with
covariance as the inner product (we identify as equivalent all quantities which di1er by a constant)
and squared norm given by variance. I(X) is a pre-Hilbert space for which we may construct the
minimal closure by adding limit points for all Cauchy sequences whose limits are not already ele-
ments of the space. The inner product over limit points is equal to the limit of the inner product for
the associatedCauchy sequence. By ((.(z), the samplemeans formCauchy sequences, and therefore
our speci0cation is consistent with the existence of such limit points, which we identify with the
elements ofM(X).

The second-order exchangeability representation theorem is concerned with population mean
quantities. It is our choice as towhat elementswe introduce intoour base vectors and thereforewhat
we may learn about from such speci0cations. For example, we may want to learn about population
variation, in which case we must introduce appropriate squared terms into our base vectors, and
make exchangeability statements over the corresponding fourth-order quantities. Details as to how
tomake the appropriate exchangeability speci0cations, the technicalities of the resulting inferences
and the inter-relationship between the adjustment of means and variances are provided in [*].

1.8 Adjusted beliefs

The inner product space described above is the fundamental geometric construct underpinning
the Bayes linear approach. The general form of this construction takes a collection U of ran-
dom quantities, with covariance inner product, and constructs the closure of the inner product
space I(U), denoted [I(U)]. For any quantity Y ↓ [I(U)], the adjusted mean and variance of
Y , given a data vector D, are de0ned to be, respectively, the orthogonal projection of Y into the
subspace spanned by the elements of D and the orthogonal squared distance between Y and this
subspace.

The explicit form for the adjusted expectation for a vector B given D, where
D = (D0,D1, . . . ,Ds), with D0 = 1 is the linear combination aTD where a is the value of
a that you would choose if faced with the penalty

L = (B ! aTD)2

It is given by

ED(B) = E(B) + Cov(B,D)(Var(D))!1(D ! E(D))

(Wemay use an appropriate generalized inverse if Var(D) is not invertible.)
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The adjusted variance matrix forD givenD, is

VarD(B) = Var(B ! ED(D))

= Var(B) ! Cov(B,D)(Var(D))!1Cov(D,B)

An important special choice for the belief adjustment occurs when D comprises the indicator
functions for the elements of a partition, i.e. where eachDi takes value one or zero and precisely one
elementDi will equal one. In this case adjusted expectation is equivalent to conditional expectation,
e.g. if B is the indicator for an event, then

ED(B) =
⎨

i
P(B|Di)Di

Therefore, the general inferential properties of belief adjustment that we shall describe below are
inherited by full Bayes analysis, and this o1ers a formal interpretation of the real world inferential
content of conditional probability arguments.

1.9 Temporal rationality

To understand how subjectivist theory can treat evanescent quantities such as population means,
we must 0rst discuss the inferential content of the standard Bayesian argument for observable
quantities. This is a large and fundamental issue, which deserves far more space than we can give
it here, where all that we will do is to sketch the outline of what is, in my view, the heart of the
subjectivist argument.

Firstly, recall the precise meaning of a formal Bayesian inference. IfA and B are both events, then
P(B) is your betting rate on B (e.g. your fair price for a ticket that pays ( if B occurs, and pays %
otherwise) and P(B|A) is your current ‘called o1 ’ betting rate on B (e.g. your fair price now for
a ticket that pays ( if B occurs, and pays % otherwise, if A occurs. If A doesn’t occur your price is
refunded).

This is not the same as the posterior probability that you will have for B if you 0nd out that A
occurs. There is no obvious relationship between the called o1 bet and the posterior judgement at
all, and, in my view, no one has advanced an intellectually compelling argument as to why the two
concepts should be con2ated. The called o1 bet formulation can, however, be understood within
the subjectivist theory as a model for the inference that you will make at the future time.

Models describe how system properties in2uence system behaviour. They involve two types of
simpli0cation, 0rstly, the description of system properties and secondly the rules by which system
properties in2uence system behaviour. Good models capture enough features of the system that
the insight and guidance they provide is su/cient to reduce our actual uncertainty as to system
behaviour. This is valuable, provided that we do not commit the modeller’s fallacy of considering
that the analysis of themodel is the sameas the analysis of the system.Acrucial condition formaking
good use of a model is to establish the relationship between the model and the actual system, as a
basis for making real world inferences.

To derive such a relationship for the Bayesian model, we must make a link between our con-
ditional judgements now and our actual future posterior judgements. This requires a meaningful
notion of ‘temporal rationality’. Our description is operational, based on preferences between ran-
dom penalties, as assessed at di1erent time points, considered as payo1s in probability currency.

Current preferences, even when constrained by current conditional preferences given possible
future outcomes, cannot require you to hold certain future preferences; for example, you may
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obtain further, hitherto unsuspected, information or insights into the problem before you come
to make your future judgements, and, always, the way in which you come to learn the information
contained in any conditioning event will convey additional information that was not part of the
formal conditioning.

These di/culties have no such force when considering whether future preferences should deter-
mine prior preferences. Suppose that you must choose between two random penalties, J and K.
For your future preferences to in2uence your current preferences, youmust knowwhat your future
preference will be. You have a sure preference for J overK at (future) time t, if you know now, as a
matter of logic, that at time t you will not express a strict preference for penalty K over penalty J.

Our (extremely weak) temporal consistency principle is that future sure preferences are
respected by preferences today. We call this

The temporal sure preference (TSP) principle Suppose that you have a sure
preference for J over K at (future) time t. Then you should not have a strict preference
for K over J now.

At 0rst sight, the temporal sure preference principle seems so weak that it can never be invoked,
because we will never have a temporal sure preference. However, we actually have many such sure
preferences and these are su/cient to determine the inferential content of the Bayesianmodel, pro-
vided we accept the temporal sure preference principle for the problem at hand. It is an interesting
philosophical and practical question as to whether and when even this principle is too strong, but
for our purposes here it is su/cient to note that this is the weakest principle which is su/cient to
give a meaningful account of the content of a Bayesian inference. We will construct the argument
for adjusted expectation, the argument for conditional expectation following as a special case, and
then consider inference for exchangeable quantities under this formalism.

1.10 Prior inference

For a particular random vector B, suppose that you specify a current expectation E(B) and you
intend to express a revised expectationEt(B) at time t. AsEt(B) is unknown to you, youmay express
current beliefs about this quantity. Suppose that you will observe the vector D by time t. What
information does the adjusted expectation, ED(B), o1er to you now about the posterior assessment
Et(B) that you will make having observedD?

We argue as follows. For any random quantity, Z, you can specify a current expectation for
(Z ! Et(Z))2. Suppose that F is any further random quantity whose value you will surely know
by time t. Suppose that you assess a current expectation for (Z ! F)2. From the de0nition of
expectation, at future time t you will certainly prefer to receive penalty (Z ! Et(Z))2 to penalty
(Z ! F)2. Therefore, by temporal sure preference, you should hold this preference now, and so you
must now assign

E((Z ! Et(Z))2) ≤ E((Z ! F)2) (1.18)

Let D be a vector whose elements will surely be known by time t. Let I(D, Et(Y)) be the
inner product space formed by adding the elements of Et(B) to I(D). From ((.(,), Et(B) is the
orthogonal projection of B into I(D, Et(B)) and ED(B) is the orthogonal projection of Et(B)

into I(D).
Therefore, the temporal sure preference principle implies that your actual posterior expectation,

Et(B), at time t when you have observedD, satis0es the following prior assessments:
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B = Et(B) ˘ S, Et(B) = ED(B) ˘ R (1.19)

where S,R each have, a priori, zero expectation and are uncorrelated with each other and withD.
Therefore, evaluation of ED(B) resolves some of your current uncertainty for Et(B) which

resolves some of your uncertainty for B. The actual amount of variance resolved is

Cov(B,D)(Var(D))!1Cov(D,B)

We say that ED(B) is a prior inference for Et(B), and therefore also for B. Relation ((.(*) holds
whatever the context in which the future judgements will be made. Adjusted expectation may be
viewed as a model for such judgements which reduces, but does not eliminate, uncertainty about
what those judgements should be. This argument is no di1erent than that for the relationship
between any real world quantity and a model for that quantity, except that, within a subjectivist
analysis, we can rigorously derive the basis for this relationship, under very weak, plausible and
testable assumptions.

Note that, ifD represents a partition, then conditional and posterior judgements are related as

Et(B) = E(B|D) ˘ R

where

E(R|Di) = 0,∀i

with interpretation as above.

1.11 Prior inferences for exchangeable quantities

We now extend the notion of prior inference to the model quantities arising in the second order
exchangeability representation, and thus provide an account of the inductive argument relating
inferences about the population model and inferences about members of the population. To
do this, we must 0rst construct an operational meaning for posterior judgements over model
quantities.

Suppose that the sequence of vectors (X1,X2, . . .) is in0nite SOE. Suppose that you will
observe a sample X[n] = (X1, . . . ,Xn), by time t. You don’t know whether you will still consider
(Xn+1,Xn+2, . . .) to be SOE at time t. We would like to apply the posterior expectation operator
Et(.) directly to the exchangeability representation Xi = M(X) + Ri(X), by the decomposition
Et(Xi) = Et(M(X)) + Et(Ri(X)). In order to do this, we need to give ameaningful construction
for thequantityEt(M(X)). This cannotbedonedirectly, as by time t theremaybenovectorM(X)

to attach the posterior expectation to.
We construct an operational meaning for Et(M(X)) by extending the thought experiment

in which we construct a bucket marked with counters corresponding to the individual Xi val-
ues. For each i > n, we additionally record, on the counter marked with Xi, the value Et(Xi), so
that each counter is marked with a vector Ui = (Xi, Et(Xi)). Let us suppose that we currently
view the sequence Ui as SOE, for i > n. This is a comparatively weak constraint. We do not
now consider that, at time t, the sequence will necessarily still be exchangeable, but we can-
not yet identify any future subsequences about which we already have reason to believe that
our future judgements will be systematically di1erent from our judgements over the rest of the
sequence.
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Therefore, we have the representation

Ui = M(U) + Ri(U)

The 0rst half of the components of Ui consist of the elements of Xi. The remaining components
consist of the elements of Et(Xi), giving the representation

Et(Xi) = M(Et(X)) + Ri(Et(X))

For anyN > n,

1
N ! n

N⎨

i=n+1
Et(Xi) = Et(

1
N ! n

N⎨

i=n+1
Xi) (1.20)

Taking the limit, in N, of the left hand side of ((.k%) gives the quantity that we identify with
M(Et(X)). The corresponding limit in N of the right hand side of ((.k%) is the limit of Et(Xn),
which, as Xn tends to M(X), we equate with Et(M(X)). Therefore, we can equate Et(M(X))

withM(Et(X)). By this construction, we can identify Et(M(X)) as a quantity, derived through
natural exchangeability judgements, which has the same logical status as the quantity M(X)

itself.
We are nowable to integratemodel based assessments into our prior inference structure.Wehave

the following theorem.

Theorem (Prior inferences for exchangeablemodels) Suppose that, by time t, wewill observe a sam-
ple X[n] = (X1 . . . ,Xn) from an in!nite SOE sequence of vectors. Suppose, also, that the sequence
Ui = (Xi, Et(Xi)), i = n + 1, n + 2, . . . is a SOE sequence. We can construct the further vector,
Et(M(X)), which, given temporal sure preference, decomposes our judgements about any future
outcome Xj, j > n as

Xj ! E(X) = [M(X) ! Et(M(X))] (1.21)

˘[Et(M(X)) ! EX[n] (M(X))] (1.22)

˘[EX[n](M(X)) ! E(M(X))] (1.23)

˘[Rj(X) ! Et(Rj(X))] (1.24)

˘[Et(Rj(X))] (1.25)

(The orthogonal decomposition of ((.k(), ((.kk) and ((.k)) follows by combining the construction
for (M(X), Et(M(X)), as the limit of partialmeansof thequantitiesUi, with the relationship ((.(*)
between each Xi, Et(Xi) and E[n](Xi), derived from TSP. The orthogonal decomposition ((.k.),
((.k-) follows from TSP and the orthogonality between the two residual terms and the three mean
terms follows as each covariance between an individual residual termand themean termsmust have
the same value, by the SOE property of the sequence, and this covariance must therefore be zero,
as the limiting average of the residual terms is equivalent to the zero random quantity.)

The above theorem shows that we may treat the vector M(X) as though it were, in principle,
observable, allowing us to decompose our current uncertainty about eachXj , j > n, into 0ve uncor-
related components of variation, as follows.

Firstly, our epistemic uncertainty is resolved into three components. We will be uncertain about
the value ofM(X), at time t, as expressed by the di1erence between the expectation, Et(M(X)),



18 M. Goldstein

that wewill express for this quantity and the quantity itself, from ((.k(). Secondly, part of our uncer-
tainty (corresponding to ((.k))) about Et(M(X)) (and thus aboutM(X)) will be resolved by the
adjusted expectation forM(X) given X[n], but a part corresponding to ((.kk), will be unresolved.
Thirdly, this adjusted expectation given X[n] is uninformative for the uncertainty currently treated
as aleatory, namely eachRj(X), about which our future expectationwill reduce variation according
to ((.k-), leaving variation according to ((.k.). Whether we will hold this variation to be aleatory at
time t will be a subjective judgement that can only be made at that future time.

Each term in this decomposition raises basic practical, methodological, foundational and com-
putational issues. As with the exchangeability representation itself, the prior inference theorem for
the representation should be viewed as a starting point, establishing that such a formulation for
inductive inference has a natural and operational meaning, based on the careful treatment of each
of the 0ve components of variation that wemust account for. This is a part of the much wider issue
as to the extent to which a Bayesian uncertainty analysis based on a complex scienti0c model may
be informative for actual judgements about the real world; see the discussion in [,].
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