
1

Analysing partially observed continuous time and
discrete state space models

(First stage summary)

Ramses Mena & Stephen Walker
September 2019

The aim of this project is to develop models and find algorithms for estimat-
ing Markov time series, which are partially observed. At the start we looked
at the case of continuous time process with discrete state space. The aim
is to then develop the corresponding models and algorithms for continuous
state spaces.

The model in discrete time is based on exponential holding times for
length of stays in each state and a transition probability and it is these
quantities which need to be estimated from the partially observed process.
When partially observed, the likelihood is notoriously hard to deal with
and the benchmark algorithm for doing this is Bladt and Sorensen (2005).
One of the key ideas of this paper is a rejection algorithm which we were
looking to improve on. It is well known that rejection algorithms within the
context of Bayesian posterior sampling algorithms are a highly weak link in
the algorithm.

A Research Associate, Qiaohui Lin, was employed during the Spring
2019 semester. The aim was to find a way to sample a very complicated
density function associated with the partially observed Markov process in
continuous time and with a discrete state space. The sampling of the density
function is a part of an algorithm for estimating the parameters of the model
which is represented by a square matrix; known as the Generator. The size
of the matrix is precisely the number of states.

The process is observed in the following way; at specific points in time,
say (τj) the process, denoted by X(t), is known to be in state (sj). It is
the missing parts of the process, i.e. what happens in each interval of time
Tj = (tj−1, tj), which needs to be sampled, in order to exploit the full data
likelihood.

If the process was fully observed, that is, each change of state was ob-
served and the times at which the changes occured were known, then the
estimation of the parameters is quite straightforward. By imputing the miss-
ing parts of the process, one is completing the data, and then one can exploit
the simplicity of the full likelihood. However, the sampling of the missing
parts of the process is non–trivial; in fact it is highly complicated. Made
more so if the number of states is large.

It is a novel approach to the sampling of this density which the RA was
taking on. The difficulty lies in the problem that the number of changes
within each interval of time Tj is unknown and must itself be sampled. If

2

this is done using a Markov chain Monte Carlo method (MCMC), which
would be quite normal in such a scenario, then the burden lies in the fact
that one would actually need a reversible jump MCMC. What is unknown in
an interval of time T with start state s0 and end state ST is, k, the number
of changes of state in going from s0 to sT , the states involved, and the time
spent in each of these states. The number of states and the times within
each state depend on k. So, with a reversible jump MCMC approach one
needs to find a suitable transtion density taking (k, s1, . . . , sk, t1, . . . , tk) to
say (k′, s′1, . . . , s

′
k′ , t

′
1, . . . , t

′
k′) satisfying the usual reversible constraints.

This is a very complicated agenda, and even if one has a mathematically
correct algorithm, it certainly does not imply it works well. Indeed, this was
the problem we faced and by the end of the Spring semeter it was concluded
that the idea was not feasible.

An alternative idea is a direct computation of the likelihood function,
not previously attempted. This avoids all need for filling in the process in
periods of time in which it is unobserved. Initial trials with simulated data
suggest there is a strong possibility of this working even with a large number
of states.

RA Report
Qiao Lin, May 2019

We introduce a new algorithm to estimate the generator matrix for a contin-
uous time markov chain, a reversible jump procedure in a Gibbs framework
with a likelihood regularization. Previous contribution in estimating gen-
erator matrix from a bayesian perspective has been made by Bladt and
Sorensen (2005). They proposed a rejection sampling to generate complete
samples of a not fully observed chain, and using the complete samples, they
were able to estimate each element in the generator matrix from a conju-
gate family. However, as the rejection sampling becomes inefficient when
the state space expands and depends heavily on the starting point, we in-
vestigate a new method to search a wider parameter space and allow more
flexibility in estimating the generator matrix. (Further comparison of the
two methods is discussed in the section of related work.) We first give a
brief introduction of the continuous time markov chain and the generator
matrix, and build our estimation model upon these well-known properties.

A continuous time markov chain (CTMC) is a stochastic process of
{X(t), t ≥ 0} where t is any nonnegative real number, and X(t) is a random
variable of the state at time t. A homogeneous CTMC where the transition
probability matrix P is denoted as:

P (X(s+ t) = j|X(s) = i) = P (X(t) = j|X(0) = i) = Pi,j(t)

A CTMC can be presented by its transition rates, i.e., the generator matrix

3

G defined as

Gi,j = lim
h→0+

Pi,j(h)− Pi,j(0)

h
= lim

h→0+

Pi,j(h)− I
h

Following this definition, G satisfies the property of Gi,j = Gi,iPi,j. G also
satisfies the property of each row summing to 0, written asGii = −

∑
j 6=iGi,j

in a finite state space.
The Kolmogorov forward equation P ′(t) = P (t)G describes the relation-

ship between transition matrix P and generator matrix G. Solving the this
ODE gives us a widely recoginized equation for CTMC

P (t) = eGt =
∞∑
l=0

Gltl

l!
.

To create conjugacy of the generator matrix for the purpose of sampling,
we use the uniformization trick to separate the transition intensity λ and
the transition probability matrix P̃ and find a conditional conjugacy family
for each of them.

For any continuous time markov chain Xt can be written as YN(t) where
N(t) is poison process with intensity λ and Y is a discrete time markove
chain with transition probability matrix P̃ , where P̃ = −λ−1G + I. The
probability from state i to state j in time t can thus be represented as

Pij(t) = P (x(t)|x(0)) =
∞∑
l=0

P̃ l
ij

e−λt(λt)l

l!

It can be easily shown this equation holds with the expansion of exponen-
tials, as in

∞∑
l=0

P̃ l e
−λt(λt)l

l!
=
∞∑
l=0

(λ−1G+ I)l
e−λt(λt)l

l!
= e−λt

∞∑
l=0

(G+ λI)l
e−λt(λt)l

l!

= e−λteG+λIt =
∞∑
l=0

Gltl

l!
= P (t)

From the equation above, we can separate λ and P̃ from the generator
matrix and sample them individually. The equation also shows the number
of jump l can be modeled as Poisson distributed random variable with
parameter λt and thus, λ can thus be modeled by a gamma prior and a
conjugate gamma posterior.

In order to sample the posterior λ and P̃ , we need to sample the number
of jumps l and the state jumped to k1, . . . , kl between each observed state
si and sj. Note number of jump l is different between each observed state.

Once l is sampled, the number of states inserted k1, . . . , kl depends on
l, i.e the dimension of parameter space is changeable determined by l. Re-
versible jump is one way to solve the problem of non-deterministic parameter
space.

4

In a resversible jump, let z = (l, k1, , , kl) = (l, sl) denote at state z we
have l parameters in parameter vector sl, and z′ = (l′, s′l) with l′ parameters
in s′l. We want to make the jump from state z to z′ and make sure this jump
can be reversibly made from z′ to z. At state z, to jump to state z′, we
propose auxiliary variable u from g(u), and u′ from g′(u′), then the jump
and its reverse can be made through a function h

h(z, u) = (z′, u′)

h−1(z′, u′) = (z, u).

To make h and h−1 both differentiable, we must have the dimension match

dim(z) + dim(u) = dim(z′) + dim(u′).

The jump of h from z to z′ is accepted with probablity α(z, z′) and z′ back
to z with probability α(z′, z). Reversibility means∫

z,z′
π(z)g(u)α(z, z′)dxdu =

∫
z,z′

π(z′)g′(u)α(z′, z)dz′du′.

Using the change of variable, the above equation holds when

π(z)g(u)α(z, z′) = π(z′)g′(u′)α(z′, z)

∣∣∣∣∂(z′, u′)

∂(z, u)

∣∣∣∣.
This would always hold if we set

α(z, z′) = min

{
1,
π(z′)g′(u′)

π(z)g(u)

∣∣∣∣∂(z′, u′)

∂(z, u)

∣∣∣∣} = min{1, A(z, z′)},

α(z′, z) = min

{
1,

π(z)g(u)

π(z′)g′(u′)

∣∣∣∣ ∂(z, u)

∂(z′, u′)

∣∣∣∣} = min{1, A(z′, z)}.

With observed states y, A(z, z′) can be written as

A(z, z′) =
p(z′|y)r(z′)g′(u′)

p(z|y)r(z)g(u)

∣∣∣∣∂(z′, u′)

∂(z, u)

∣∣∣∣
where p(z′|y)/p(z|y) is the likelihood ratio, and r(z) is the probability of
proposal to jump to z′.

Between each observed si, sj, We propose the number of jumps l goes
up by 1 to l + 1 (birth) with probability 1

2
, and goes down to l − 1 (death)

also with probability 1
2
. Once we make the decision of birth, we randomly

choose a state (k−), between this current state (k−) and its next one (k+),
we uniformly insert a jump kins, then the process of k− to k+ becomes k−
to kins to k+. If we make the decision of death, we randomly choose a state
and cancels it.

5

Because the dimension change is only 1 in this case, we only propose a
one-dimensional auxiliary variable u in the birth step and no u′ is required
coming back to one dimension lower state, i.e., dim(z) + dim(u) = dim(z′).

If we propose u uniformly between all states (we have s states in total),
and kins = u, we have

(x, u) = (l, k1, . . . , k−, k+, . . . , kl, u),

and x′ = (l + 1, k1, . . . , k−, kins, k+, . . . , kl). As we set kins = u, we have∣∣∣∣∂x′/∂(x, u)

∣∣∣∣ = 1.

Thus, for l > 1, the reversiblity would be satisfied when we use

A(z, z′) =
p(z′|y)

p(z|y)

Pr(death)Palloc)

Pr(birth)Palloc

1

g(u)

∣∣∣∣ ∂z′

∂(z, u)

∣∣∣∣
=

(
λt

l + 1

Pk−,kins
Pkins,k+

Pk−,k+

) 1
2

1
l+1

1
2

1
l+1

∗ 1
1
s

∗ 1.

Here p(z|y) is determined by two parts, the number of jumps l and the prob-
ability of making the jump to observed status using the transition matrix.
Since l ∼ Po(λ),

p(l|λ) =
λle−λ

l!
,

p(l + 1|λ) =
λl+1e−λ

(l + 1)!

and
p(l + 1|λ)

p(l|λ)
=

λt

l + 1
.

Thus
p(z′|y)

p(z|y)
=

λt

l + 1
∗
Pk−,kins

Pkins,k+

Pk−,k+
.

Since insertion position is random between all jumps, Palloc = 1
l+1

for both
birth and death, as jumping up has l + 1 space for insertion between si
and k1, , kl and sj and jumping down has l + 1 states k1, , kl+1 to choose to
cancel. As u is uniformly proposed between all possible states, g(u) = 1

s
, s

is the number of legal states to propose, all the states that is not same as
k− and k+.

Similarly, for l > 1,

A(z′, z) =
p(z|y)

p(z′|y)

Pr(birth)Palloc
Pr(death)Palloc

g(u)

1

∣∣∣∣∂(z, u)

∂z′

∣∣∣∣
=

(
l

λ

Pkcan−1,kcan+1

Pkcan−1,kcan ∗ Pkcan,kcan+1

) 1
2

1
l

1
2

1
l

∗
1
s

1
∗ 1.

6

However, l = 1 and l = 0 are the two special cases for the reversible jump
as at l = 0 there is no death proposal, it can only jump up. Thus, at l = 0,
there is only a birth propsal with

A(z, z′) =

(
λt

l + 1

Pk−,kins
Pkins,k+

Pk−,k+

) 1
2

1
l+1
1
l+1

∗ 1
1
s

∗ 1, l = 0.

The 1
2

is no longer in the denominator as the birth proposal now has prob-
ability 1.

When l = 1, jumping up is the same as l > 1 cases, but jumping down
has to be modified for the reversibility,

A(z′z) =

(
l

λ

Pkcan−1,kcan+1

Pkcan−1,kcan ∗ Pkcan,kcan+1

) 1
l

1
2

1
l

∗
1
s

1
∗ 1, l = 1.

The death proposal for l = 1 is l = 0, and l = 0 has probability 1 to propose
the reverse instead of 1

2
. Hence there is no 1

2
in the nominator for l = 1.

Once the A(z, z′) and A(z′, z) is calculated at each proposal,

α(z, z′) = min{1, A(z, z′)} and α(z′, z) = min{1, A(z′, z)}

is determined for acceptance of the proposal and this concludes the first
step, the reversible jump, in our sampling.

One problem of this strategy is that our uniform insertion of states is
not informative of the transition probability matrix P̃ . To efficiently recover
P̃ , we need the states to be more representative of the transition probabil-
ity. Thus, after the reversible jump step, we do a shuffle of states using
Metropolis Hastings.

With the current l and k1, . . . , kl from the reversible jump result, we now
propose k′′1 , k

′′
2 , k

′′
l , with only one criterion that k′′i has to be a legal state not

the same as its neighbours. We make this k′′1 , k
′′
2 , k

′′
l a metropolis proposal

and we decide whether to accept this proposal by

min

{
1,
Psi,k′′1Pk′′2 ,k′′3 . . . Pk′′l ,sj
Psi,k1Pk2,k3 . . . Pkl,sj

}
,

where
Psi,k′′1Pk′′2 ,k′′3 . . . Pk′′l ,sj
Psi,k1Pk2,k3 . . . Pkl,sj

is the likelihood f(k′′)/f(k) in the Metropolis acceptance ratio

f(k′′)

f(k)

q(k|k′′)
q(k′′|k)

.

The proposal q(k|k′′)/q(k′′|k) is cancelled here as the k′′1 , k
′′
2 , k

′′
l and k1, k2, kl

does not depend on each other. This Metropolis decided the sequence we
insert into observed states in each iteration.

7

Now with the number of states l1, , , lN and all the k sequences inserted
between all observed data, our posterior λ and P̃ follows the posterior in a
Gibbs framework of

λ|· ∼ Ga(a+ l1 + · · ·+ lN , b+ t1 + · · ·+ tN)

where a, b is the prior hyperparameter λ ∼ Ga(a, b). Here t1, . . . , tN is the
time elapse between observed states s1, sN .

P̃ [i,]|· ∼ Dir(α +Ni1, . . . , α +Nis)

P̃ [i,] is the ith row of P̃ without the diagnol element P̃ [i, i], P̃ [i, i] = 0.
α is the hyperparameter of prior Dirichlet distribution of P̃ [i,]. Nij is the
number of jump from state i to state j in the chain we complete in total.

Instead of updating the λ and P̃ using the posterior sample, we treat the
posterior sample at iteration iter + 1, λ′ and P̃ ′, as a Metroplolis-Hastings
proposal for λ and P̃ at iteration iter. The acceptance ratio is

min

{
1,
L(λ′, P̃ ′)

L(λ, P̃)

}
,

where L(λ, P̃) is the likelihood of all observed data s1, . . . , sN depending on
(λ, P̃),

L(λ, P̃) =
N∏
i=1

Psi,si+1
(t) =

N∏
i=1

eGti [si, si+1] = e(−λP̃+λI)ti [si, si+1].

The posterior sample at iteration iter + 1 will not be accepted if it results
in a much smaller likelihood over observed data points. In this way, we
regularize the chain to move in the direction where the observed likelihood
can only be improved over iterations.

One thing we have to notice is in a general Metropolis-Hastings frame-
work, the acceptance ratio is

f(λ′, P̃ ′)

f(λ, P̃)

q(λ, P̃ |λ′, P̃ ′)
q(λ′, P̃ ′|λ, P̃)

but we are only keeping the likelihood but omitting the proposal q part in
our calculation.

We simulate a process with intensity λ = 4 and a random matrix tran-
sition matrix P̃ with 7 states. We observe random 200 data points in the
chain, the intervals have expected λ data points omitted in between. The
prior we use for λ is Gamma(4,1), and prior for each row of P̃ is Dirich-
let(1,1,,1).

Using the MCMC described in the previous section, we are able to recover
the λ = 4.8 and P̃ with maximum 0.1 difference elementwise to the true P̃ .

8

Figure 1: True and recovered Loglikelihood at observed data points in the
simulated process

We compare the true likelihood Ps1,s2(t1),Ps2,s3(t2),. . . ,PsN−1,sN (tN−1) with

the one we recover using estimated λ and P̃ .

The true loglikelihood for the whole observed chain

L =
N∏
i

Psi,si+1
(t)

is −385, while our recovered loglikelihood is higher by 0.9.
Bladt and Sorensen (2005) proposed a rejection sampling within a gibbs

framework to estimate the generator matrix for the continuous time markov
chain. If all jumps observed, the likelihood can be written as

L =
m∏
i

∏
j 6=i

G
Nij

ij e−GijTi

m is the number of all states,Ti is the time stayed at status i, and Nij is the
number of jumps from i to j in the complete chain. Based on the likelihood,
one conjugate family is to propose a Gamma prior Ga(αij, βi) for each of
the element Gij in the G matrix. So the posterior for Gij is

p∗(Gij) ∝ G
Nij+αij−1
ij e−Gij(Ti+βi)

9

When not all state are observed in the chain, a rejection sampling is
proposed by Bladt and Sorensen (2005) and further explained by Inamura
(2006). We first obtain one sample of the complete chain based on the
observations s1, . . . , sn at time t1, . . . , tn. At the (n−1)th observed state with
status i at time stamp tn−1, we propose a holding time ∆t1 (exponentially
distributed with parameter Gii), if tn−1 + ∆t1 < tn, we propose an inserted
unobserved state S1 = j based on the probability −Gij/−Gii. Now we start
from S1 = j, and propose ∆t2 exp(Gjj), if tn−1 + ∆t1 + ∆t2 < tn we insert
another S2 = k at tn−1 + ∆t1 + ∆t2 based on probability −Gjk/Gjj. Repeat
this procedure until tn−1 + ∆t1 + · · · + ∆tl ≥ tn, if the final state Sl when
the time is up is the observed state sn, we accepted this chain between sn−1

and sn and move on to sample the chain sn to sn+1, otherwise we reject
and start from sn−1 again. Once the chain is completed and accepted, we
calculate the Nij and Ti and update the G matrix by drawing each element
from its posterior.

Though rejection sampling is one way of getting samples of the complete
chain and repeated estimate G by each element based on the chain, it has
one drawback. If the G starts from a bad prior, it may never get to the
right point as the chain it proposed will always get rejected and the Gibbs
sampler for estimating G will get stuck. The fact the rejection sampling
does not move around and search the whole parameter space for G makes
the estimate depend heavily on the starting point and the prior.

Another problem of the rejection sampling is when the observed states
are far away from each other in time or the state space is large, the ac-
ceptance ratio of the chain gets very small, and the algorithm will thus be
inefficient.

Technical Report
Mena & Walker, September 2019

We consider a partially observed Markov process which has a finite state
space, denoted by S, and in continuous time; i.e. a continuous time discrete
state system. Also known as a continuous time Markov chain (CTMC).
Such a system has many application areas, including physiscs, ecology, and
neuroscience; see [5], [2] and [9], respectively. One special case of such a
process would be a Renewal Process, see [6], for example.

If such a process {X(t); t ≤ τ}, is fully observed over time; so that at
any point in time the value of the state is known, inference for the unknown
parameters is straightforward. The unknown is the Generator Matrix, G,
which is a m square matrix, also known as the intensity matrix. This ma-
trix of zero row sums, comprises non–negative off–diagonal jump intensities
and non–positive diagonal elements, which we refer to as the exponential
parameters, since the holding times in each state are exponential random
variables.

10

The generator matrix can therefore be understood as comprising a diag-
onal matrix D with positive entries, comprising the exponential parameters
for the holding times within each state. So if there are m states, D is of
dimension m×m. The other unknown is a m×m stochastic matrix P com-
prising the transition probabilities; P = (pjk), with pjj = 0. So once it is that
a state is to change, P determines the probabilities for the move to state.
The point is that if all transition times are known, and the accompanying
changes of state are also known, the likelihood function is

L(P,D|data) =
∏
j,k

p
njk

jk ×
∏
j

d
nj

j e−Tj dj ,

where njk is the number of transitions from state j to state k, nj is the
number of visits to state j, and Tj is the total time spent in state j. From
here, a maximum likelihood estimator is easily available, for example, as
would be a Bayesian posterior.

However, in most illustrations involving such processes, the process X is
observed only at specific time points, say at times (t1, . . . , tn), and we write
the observations as (X(t1), . . . , X(tn)), to be shortened to (X1, . . . , Xn).
In this case, in order to construct the likelihood function, we would need
Qt(j, k); the probability of moving from state j to state k within an interval
of time t. The likelihood then becomes

L(D,P |data) =
n∏
i=1

Q∆i
(xi, xi+1), (0.1)

where ∆i = ti− ti−1, with t0 = 0, and, as we have mentioned, xi is the state
of the process at time ti. We will see how Q depends on D and P in section
2 though it is well known textbook theory.

The problem of the partially observed process has received considerable
attention within the literature, and up to date reviews can be found in [1],
[4], and [7], for example. The last of these references also provides an R
package implementation of various proposals. By now, it is well understood
that a maximum likelihood estimation (MLE) approach has several draw-
backs; i.e. the MLE might not exist. The existence issues worsen as gaps
between the partially observed records increase; see [1]. Given all this, a
Bayesian approach to the problem is often preferred.

Perhaps the most accepted technique is to impute the missing observa-
tions between the observed data. Indeed, this is the technique proposed by
[1], for both of their approaches, uisng the expectation maximization (EM)
algorithm and the Gibbs sampler method. However, these approaches rely
on an ability to sample the missing observations – which is not an easy
prospect, particularly when the number of states becomes large.

The approach we describe in this paper has we believe been overlooked
in preference for the imputation procedures. However, as we shall see, it is
possible to use a Bayesian approach on the likelihood function correspond-
ing to the partially observed process. Given the likelihood is not easy to

11

compute, but we can do it, so a direct sampling from the posterior is not
possible. Therefore a Metropolis algorithm is used.

The process can be characterized by the Generator Matrix G which is of
dimension m and has zero row sums. The background here is well trodden
and to be found, for example, in section 6.9 of [3]. The generator is given
by

G = −D +DP.

The interpretation is that if the process is in current state j, the remaining
time in this state is an exponential random variable with parameter dj and
after this time the process moves to a different state k with probability pjk.
That X is a Markov process follows immediately from the lack of memory
property of the exponential distribution.

The probability of moving from state j to state k, with k possibly equal
to j, in an interval of time t, is given by

Qt(j, k) = [exp(tG)](j,k). (0.2)

Here the matrix exp(tG) is given by

exp(tG) =
∞∑
l=0

tl

l!
Gl (0.3)

with G0 = I, the s× s identity matrix. So Qt(j, k) is the (j, k)th element of
exp(tG). For more on the theory presented here, see, for example, [3].

It is a matter of some light calculus and algebra to understand the repre-
sentations involved and to demonstrate the veracity of (0.2). It is tempting
to write

Qt(j, k) = exp(−tD) exp(tDP)

and to expand exp(tDP) using the exponential series, since all the terms
will now be positive. Hence, if possible, one could write

Qt(j, k, l) = exp(−tD)
(tDP)l

l!

to obtain a convenient full likelihood with missing information l. However,
this “obvious” strategy fails in general since for matrices A and B, exp(A+
B) 6= exp(A) exp(B), with equality only if AB = BA. Hence, this would
require D2 P = DPD, which is clearly not true in general.

We will need to sum (0.3), to a finite number of terms, in order to
approximate the exp(tG). This is standard; indeed the computer will always
return an exponential value by truncating such a sum. Here we discuss how
many terms are required for a given level of accuracy.

To this end, let ‖·‖ be a matrix norm which is both sub–additive and
sub–multiplicative; i.e. it satisfies the triangular inequality and ‖AB‖ ≤
‖A‖ ‖B‖. For example,

‖A‖ =
∑
i,j

|aij|.

12

If we truncate the sum of exponential terms at L, the error is given by

E(L) =

∥∥∥∥∥
∞∑
l=L

tlGl

l!

∥∥∥∥∥
and we want to find L so that this is upper bounded by ε, which would be
our choice.

Now

E(L) ≤
∞∑
l=L

(t‖G‖)l

l!
=

(t‖G‖)L

L!

∞∑
l=0

(t‖G‖)l

(l + L)!/L!
.

Since (l + L)!/L! ≥ l! we see that

E(L) ≤ (t‖G‖)L

L!
et‖G‖.

Hence, we find L such that this bound is less than ε. Note that

‖G‖ ≤ ‖D‖ (1 + ‖P‖)

and so it is easy to find the appropriate L.

Lemma 0.1. If

L =
log(1/ε) + t‖G‖(1 + b)

log b

for any b > 1, then
(t‖G‖)L

Γ(1 + L)
et‖G‖ ≤ ε.

Proof. Let a = t‖G‖; then

Γ(1 + L)/aL =

∫ ∞
0

(s/a)L e−s ds =

∫ ∞
0

yL e−ay a dy,

and so

Γ(1 + L)/aL > a

∫ ∞
b

yL e−ay dy > bL e−ab

for any b > 0. Plugging in the given value of L yields

Γ(1 + L)/aL > exp{log(1/ε) + a(1 + b)− ab} = ea/ε,

as required.

As an illustration, we took

P =

 0 0.3 0.7
0.5 0 0.5
0.8 0.2 0

 and D = diag(1, 2, 1
2
)

13

and approximated exp(G) with 150 terms in the exponential expansion,
yielding

exp G =

0.487 0.092 0.421
0.337 0.188 0.475
0.228 0.056 0.716

 .

This is a stochastic matrix and is correct to 3 decimal places.
The likelihood function for the given observations (X(0)X(t1), . . . , X(tn))

is

L(G) =
n∏
i=1

Q∆i
(xi−1, xi),

where, for short, we write X(ti) = xi, and ∆i = ti − ti−1, with t0 = 0.
Inference is complicated by the fact that Q is defined via an infinite sum.
Maximizing the likelihood function is going to be exceptionally difficult due
to the numerous constraints involved. Indeed, it appears to be a stratgey
that has not been tried.

This has motivated searches for suitable latent variables. If all state
changes are observed, with the time spent in each state also observed, the
likelihood takes on a simple form;

L(G) =
∏
j 6=k

p
njk

jk

∏
j

d
nj

j exp(−dj Tj), (0.4)

where Tj is the total time spent in state j, nj is the number of times state
j is visited and njk is the number of times a change from state j to state k
occurs.

In order to utilize this full data likelihood via an EM algorithm, it would
be necessary to sample the missing states and changes and times spent in
states between known states. That is, suppose the start state is x and the
end state is y and the time between these two known states is t. That is, at
time 0 it is known the process is in state x and after a time t it is known
the process is in state y. The probability of this is Qt(x, y) = [exp(tG)](x,y).

To start to fill in the missing data, we denote the number of changes
within this time region by k; so there will be k + 1 states

(s0 = x, s1, . . . , sk−1, sk = y)

with times in states (t1, . . . , tk+1); i.e. time tj is spent in state sj, and∑k+1
l=1 tl = t. By means of illustration, suppose we want the probability den-

sity for k = 2, with inbetween state s1 and times (t1, t2), with t3 = t−t1−t2.
See Fig 2. So t1 is the time spent in state s0 and t2 is the time spent in s1

and t3 = t− t1 − t2 is the time spent in state s2. Then

p(2, s1, t1, t2) = ds0e
−t1ds0 ps0 s1 ds1e

−t2ds1 ps1 s2 e
−ds2 (t−t1−t2).

14

Figure 2: Observed states x and y separated by a time of length t

In general, the density to sample is given by

π(k, t1, . . . , tk, s1, . . . , sk−1|G, x, y, t) = e−tk+1dsk

k∏
l=1

psl−1 sl dsl−1
exp(−tl dsl−1

).

(0.5)
This is not an density easy to sample. A laboured way is to sample the
process forward from the start; i.e. to sample t1 then s1, t2, s2 and so on, and
to accept (k, t, s) if after time t the process is at state y. This is equivalent
to sampling with the contraint via a rejection algorithm. Of course, with
a few states this might work adequately but will run into efficiency issues
when the number of states becomes large. This idea of sampling the missing
data and the full likelihood as an iterative procedure is precisely the EM
algorithm of [1], who also use the idea for the Gibbs sampler.

As has just been mentioned in the previous section, a Bayesian approach
using latent variables can be based on sampling π, given in (0.5), using a
Markov chain such as a Gibbs sampler or a Metropolis–Hastings sampler.
Hence, within a Gibbs sampling framework, we would sample iteratively

π(k, t1, . . . , tk, s1, . . . , sk−1|G, xi, xi+1,∆i)

for i = 1, . . . , n− 1, and then sample

π(G|full data),

which is based on (0.4), suitably multiplied by the prior.

15

However, latent variables are and should only be introduced when the
likelihood function is not directly computable. We have shown in section
2 that it is computable; and so a Bayesian analysis can proceed, via a
Metropolis algorithm, for example. With such a Bayesian framework, the
setting of prior distributions is straightforward; independent gamma priors
can be assigned to each di, with shape and scale parameters both set to
1
2
, for example, and each row of P can be assigned a Dirichlet prior with

parameters chosen so the prior is uniform on the simplex.
With the P and D as given in the first section, we sampled a process

with 5000 changes of state, and from this we subsampled 1000 observations
with an equal time difference between the observations as 2; i.e. ∆i = 2 for
all i.

We use a Metropolis–Hastings algorithm for sampling from the posterior
distribution. The proposals for the parameters are q(d′j|dj), for each j, to
be a log–normal distribution with mean log dj and standard deviation 0.05,
and q(p′j|pj), for each j, where pj = (pjk), is a Dirichlet distribution with pa-
rameters (cpjk) and c = 50. Each time a proposal is made, we recompute the
likelihood function in order to determine whether the proposal is accepted.
For this we summed the exponential series to 150 terms. We illustrate with
the update for d1; we sample d′1 from q(d′1|d1) and accept this move with
probability

α = min

{
1,
L(G′)π(D′)

L(G) π(D)

}
,

where G′ = −D′ + D′P and D′ = (d′1, d2, d3), while G = −D + DP and
D = (d1, d2, d3). A similar and obvious procedure follows for the other
parameters making up D and P .

The results are as follows: with a running of the Metropolis–Hastings
chain for 100,000 iterations, we estimate

P̂ =

 0 0.22 0.78
0.43 0 0.57
0.73 0.27 0

 and D̂ = diag(1.08, 2.48, 0.67).

A trace plot of the 100,000 samples of (d1) is presented in Fig. 3.
First, here, we construct a data set with 5 states. The exponential pa-

rameters for the D matrix are taken to be (0.4, 1.8, 1.2, 1.6, 2.0), and the P
matrix is obtained by each row having probabilities obtained by a uniform
Dirichlet distribution. Then with these true values, a process is generated
from which we extracted as data 3000 points at equally spaced intervals of
time, of length 2.

A Metropolis algorithm is used to perform Bayesian analysis. The prior
for the rows of P are independent uniform Dirichlet distributions and the
prior for the exponential parameters are independent standard exponential.
We use 2m Metropolis steps within each iteration; one for each of the m
exponential parameters and one for each of the m rows of P . The proposal

16

for the former is a log–normal centered on the current value with a vari-
ance of 0.05, and the proposal for the latter, i.e. a new row, is a Dirichlet
distribution with parameter values set at 10 multiplied by the current row
values. The ensuing chain is run for 50,000 iterations.

The subsequent posterior density estimates obtained from the sample
output of the Metropolis chain is presented in Fig. 4. The means and vari-
ances are given, respectively, by

(0.45, 0.001) (0.82, 0.007) (1.10, 0.019) (1.99, 0.108) (2.18, 0.216).

Apart from the d4, in this instance, the estimates are good. The estimates
of P , which are not focused on here, are also good, for example p12 has a
true value of 0.12 and is estimated at 0.10.

Next we considered a process with m = 10 states with the probability
matrix generated in the same way as before and the exponential parame-
ters as dj = j/4 for j = 1, . . . , 10. We took the prior distributions as before,
though in this case we took the proposals for the exponential parameters
to have a standard deviation of 0.1. A plot of the estimates of the param-
eters against the estimated values, obtained as the sample means from the
Metropolis algorithm output, is provided in Fig. 5. The chain was run this
time for just 5000 iterations.

Other figures, Fig. 6 and Fig. 7 show in more detail output of the
Metropolis algorithm, including the posterior density estimates of the ex-
ponential parameters and some trace plots, respectively.

References

[1] M. Bladt and M. Sorensen, Statistical inference for discretely ob-
served Markov jump processes, Journal of the Royal Statistical Society,
Series B (2005) 67, 395–410.

[2] K. Fukaya and J. A. Royle, Markov models for community dynamics
allowing for observation error, Ecology (2013) 94, 2670–2677.

[3] G. R. Grimmett and D. R. Stirzaker, Probability and Random
Processes (1982), Oxford University Press.

[4] R. B. Israel, J. S. Rosenthal and J. S. Wei, Finding generators
for Markov chains via empirical transition matrices, with applications
to credit ratings, Mathematical Finance (2001) 11, 245–265.

[5] N. G. Van Kampen, Stochastic Processes in Physics and Chemistry
(2007), North–Holland.

[6] R. Pyke, Markov renewal processes: definitions and preliminary prop-
erties, The Annals of Mathematical Statistics (1961) 32, 1231–1242.

17

[7] M. Pfeuffer, ctmcd: An R Package for Estimating the Parameters
of a Continuous-Time Markov Chain from Discrete-Time Data, The R
Journal (2017) 19, 127–141.

[8] D. B. Rubin, Bayesianly justifiable and relevant frequency calculations
for the applied statistician, Annals of Statistics (1984) 12, 1151–1172.

[9] M. Sauer and W. Stannat, Reliability of signal transmission in
stochastic nerve axon equations, Journal of Computational Neuroscience
(2016) 40, 103-111.

18

0e+00 2e+04 4e+04 6e+04 8e+04 1e+05

1
2

3
4

iteration

d_
1

Figure 3: Trace plot of the 100,000 samples of d1

19

d(1)

de
ns
ity

0.35 0.45 0.55 0.65

0
2

4
6

8
10

12

d(2)

de
ns
ity

0.6 0.8 1.0

0
1

2
3

4

d(3)

de
ns
ity

0.8 1.2 1.6

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

d(4)

de
ns
ity

1.5 2.5

0.
0

0.
5

1.
0

1.
5

d(5)

de
ns
ity

1.0 2.0 3.0 4.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Figure 4: Histogram estimates of posterior densities for the exponential
parameters d1 to d5

20

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

true d

es
tim

at
ed

 d

Figure 5: True exponential parameters plotted against the estimated values

21

d_1

de
ns
ity

0.18 0.26

0
5

10
15

20
25

d_2

de
ns
ity

0.40 0.55

0
2

4
6

8

d_3

de
ns
ity

0.5 0.8 1.1

0
1

2
3

4
5

d_4

de
ns
ity

0.8 1.2 1.6

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

d_5

de
ns
ity

1.0 1.6

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

d_6

de
ns
ity

1.5 2.5

0.
0

0.
5

1.
0

1.
5

2.
0

d_7

de
ns
ity

1.5 2.5

0.
0

0.
5

1.
0

1.
5

d_8

de
ns
ity

1.5 2.5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

d_9

de
ns
ity

1.5 3.0 4.5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

d_10

de
ns
ity

1.5 3.5

0.
0

0.
2

0.
4

0.
6

0.
8

Figure 6: Histogram density estimates of the exponential parameters from
Metropolis output

22

0 1000 2000 3000 4000 5000

0.
18

0.
22

0.
26

0.
30

iteration

d_
1

0 1000 2000 3000 4000 5000

0.
6

0.
7

0.
8

0.
9

1.
0

iteration

d_
3

0 1000 2000 3000 4000 5000

1.
5

2.
0

2.
5

iteration

d_
7

0 1000 2000 3000 4000 5000

1.
5

2.
5

3.
5

4.
5

iteration

d_
10

Figure 7: Trace plots of some of the exponential parameters from Metropolis
output

