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Statistical induction

Random phenomena drive many aspects of this world
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Statistical induction

The basic probabilistic setup

• (⌦,A,P): Probability space

. ⌦ –sample space. Set of all possible outcomes

. A –�-field. Collection of subsets of ⌦ with all events of interest

. P : A 7! [0, 1] –Probability measure. Mathematically coherent
measure to quantify all events A 2 A

• Features of interest can be translated into “ numeric ” quantities via

. (X,X )-valued functions, X : ⌦ 7! X. random variables (r.v.’s)

• Given a r.v. X, the set function defined by

PX(B) = P(X�1(B)), for all B 2 X (1)

is termed the distribution or law of the random variable X.

. When X = R and B = (�1, x] we write

FX(x) = PX((�1, x]) = P(X  x) ! the (cdf) of X
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Statistical induction

Ex. toss a coin

⌦ = {head, tail} = {!1,!2} = {0, 1}

A = {⌦, {0}, {1}, ;}

Let X the r.v. that assigns 1 if the outcome is tail and 0 otherwise,
i.e. PX({1}) = P(X(!1) = 1) with X = {0, 1}

• For such quantity, we might assign a value ✓ 2 [0, 1], i.e.

PX({1}) = ✓

) Uncertainty about X is transferred to the parameter of interest ✓.

How can we improve our knowledge about ✓ in the presence of
observations from the random phenomena?



Statistical induction

The basic setup

• Availability of more info about a random phenomenon

) better uncertainty quantification

) better statistical induction

• Realizations of a given phenomenon encoded via r.v.’s {Xi}i2I
. Logical/physical independence 6) stochastic independence

so P(Xn+1 2 B | X1, . . . , Xn) = P(Xn+1 2 B) not always a good idea!

. Statistical learning requires stochastic dependence !

Under physical independence all we can assume is certain stochastic
symmetry among {Xi}i2I
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Statistical induction

The basic setup

• Symmetry/Stability principles in the law modelling {Xi}’s are
fundamental for statistical induction

. e.g. the past and future have similar behaviour

• Major symmetries used in statistics

. IID r.v.’s: physical & stochastic independence (rare in real apps!)

. Exchangeability: physical indep. + sampling order invariace!

. Stationarity: Uncertainty is not “ time ” invariant

“ . . . practitioners seem to prefer the language of populations:
theoreticians, that of exchangeability ”

Lindley and Novick, 1981.
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Statistical induction

Exchangeable sequences

A finite sequence of r.v.’s, {Xn}ni=1, is said to be finite exchangeable if,
for any permutation ⇡ of (1, . . . , n)

(X1, . . . , Xn)
d
= (X⇡(1), . . . , X⇡(n))

An infinite sequence {Xn}1i=1 is said to be exchangeable if every

subcollection is exchangeable.

⇡ Distributional invariance under sampling order

. What can we say about the law of an exchangeable sequence

. B. de Finetti’s representation characterises exchangeable sequences



Statistical induction

de Finetti’s representation Theorem: X = {0, 1} case

• B. de Finetti 1931: A seq. of binary r.v.’s {Xi}1i=1, e.g. with values
in X = {0, 1}, is exchangeable i↵ there exists a dist. q on [0, 1]

P(X1 = x1, . . . , Xn = xn) =

Z

[0,1]
✓sn(1� ✓)n�snq(d✓)

where sn :=
Pn

i=1 xi.

q(·) is the distribution of limn!1
sn
n

Conditional independence

P(X1 = x1, . . . , Xn = xn | ✓) =
nY

i=1

P(Xi = xi | ✓) = ✓sn(1� ✓)n�sn

This decomposition in “ conditionally independent sample ” given
a random parameter “ ✓ ” justifies the Bayesian approach
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Statistical induction

Example: {Xi}1i=1 be Bernoulli r.v.’s

Two di↵erent Bernoulli exchangeable laws by two di↵erent persons

P(x1, . . . , xn) =
12

sn + 2

1� n+4
sn+2

� and P(x1, . . . , xn) =
1

[n+ 1]
� n
sn

� ,

. These persons believe that P(X1 = 1) = 0.4 & P(X1 = 1) = 0.5 resp.

. Both believe that ⇥ := lim
n!1

1
n

nP
i=1

Xi exists & P(X1 = 1 | ⇥ = ✓) = ✓

. Since P(X1 = 1) = E(⇥) they must have di↵erent values for E(⇥)

. Assume we observe the result of n = 20 given by 14 “ 1s ” and 6 “ 0s ”.

P[X21 | x1, . . . , x20] = 0.64 and P[X21 | x1, . . . , x20] = 0.68.

• Regardless of the prior mean on ⇥, they should modify their opinion
about the prop. of 1’s!

• Consequence due to exchangeability, regardless of frequencies being
interpreted as probabilities.

Schervish, 1995.



Statistical induction

In Bayesian terms
If X is a r.v. on X = {1, 2} with prob. p1 and p2 = 1� p1 assigned to
each element of X. That is {X | p1, p2} ⇠ Bernoulli(p1, p2)

Each value of p = (p1, p2) defines probability measure on X
q = Be(↵1,↵2) defines a probability measure on

PX := {Space of prob. measures on X}={(p1, p2); pi � 0 y p1 + p2 = 1}

) p1 | X(n) ⇠ Be

 
↵1 +

nX

i=1

�Xi({1}),↵2 +
nX

i=1

�Xi({2})
!

. If X = {1, 2, . . . ,K} then X | (p1, p2, . . . , pk) ⇠
Qk

i=1 p
�X({i})
i

PX ={(p1, . . . , pk); pi � 0 y p1 + · · ·+ pk = 1}

)(p1, p2, . . . , pk) |X(n)⇠Dirichlet(↵1+
nX

i=1

�Xi({1}), . . . ,↵k+
nX

i=1

�Xi({k}))

One parameter per value in the support X !
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Statistical induction

Prior to posterior e↵ect



Statistical induction

Exchangeable sequences: general X
• Let PX be the space of all probability measures on (X,X )

A seq. {Xi}1i=1 is exchangeable i↵ there exists Q on PX such that

P(X1 2 A1, . . . , Xn 2 An) =

Z

PX

nY

i=1

P(Ai)Q(dP), 8n � 1 and Ai 2 X

Alternatively: Xi | P
iid⇠ P and P ⇠ Q (conditionally iid) .

Hewitt and Savage 1955

. If Pn(A) := 1
n

Pn
i=1 �Xi(A) denotes the empirical dist. hence, Q is

the dist. of the RPM P, where P[Pn ) P] = 1 (P ⇠ Q)

. Q is unique

. “The unknown ”, P, that allows us to disaggregate the elements
of X(1) as a conditional iid sample, is random.



Statistical induction

Consequences of de Finetti’s representation

There is a clear bijection between the law of {Xi}1i=1 and Q

Pick Q ) we have a law for {Xi}1i=1

Pick a law for {Xi}1i=1 ) there exist a unique Q

i.e. P[Xn+1 2 A | X(n)] = EQ
X(n)

[P(A)] characterizes Q with

QX(n)(B) := P(P 2 B | X(n)),

However, any P 2 PX can be seen as the limit of Pn!

Bayesian interpretation:
Q takes the interpretation of prior distributions on P

Probabilistically speaking the Bayesian approach is equivalent to the
exchangeability assumption of the {Xi}1i=1
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de Finetti and the Bayesian approach

The law of the exchangeable r.v’s (and thus Q) is characterized by the
conditional probabilities (or predictive distributions)

P [Xn+1 2 An+1 | X1 2 A1, . . . , Xn 2 An] =

EQ


n+1Q
i=1

P(Ai)

�

EQ


nQ

i=1
P(Ai)

�

= EQ
X(n)

[P(An+1)]

for all n > 1, with P0 := P[X1 2 A1] = EQ[P(A1)] and where

QX(n)(dP) =

nQ
i=1

P(Ai)Q(dP)

EQ


nQ

i=1
P(Ai)

� , (dominated case)

the posterior distribution of P given X(n) := (X1, . . . , Xn)



Statistical induction

Exchangeability: statistical learning for physically
independent observations

Random phenomena encoded in X-valued {Xi}1i=1 exchangeable
sequence driven by P ⇠ Q

Q(·) = �q✓(·) ) Xi’s are iid

P(X1 2 A1, . . . , Xn 2 An) =

Z

PX

nY

i=1

P(Ai) �q✓(dP) =
nY

i=1

q✓(Ai)

PX : Space of all distributions on X

q✓



Statistical induction

Exchangeability: statistical learning for physically
independent observations

Random phenomena encoded in X-valued {Xi}1i=1 exchangeable
sequence driven by P ⇠ Q

Q(F⇥) = 1 ) Parametric family
Epistemic
uncertainty

P(X1 2 A1, . . . , Xn 2 An) =

Z

F⇥

nY

i=1

F✓(Ai)| {z }
z }| {
⇡✓(d✓)

Random
uncertainty via
param. model

PX : Space of all distributions on X
q✓

F⇥



Statistical induction

Exchangeability: statistical learning for physically
independent observations

Random phenomena encoded in X-valued {Xi}1i=1 exchangeable
sequence driven by P ⇠ Q

Q(P : d(P, ⌘) < ") > 0, 8 ⌘ 2 PX y " > 0 ) BNP

P(X1 2 A1, . . . , Xn 2 An) =

Z

PX

nY

i=1

P(Ai)Q(dP)| {z }
Random and
epistemic uncertainties
in one stroke!

PX : Space of all distributions on X
. . . or other infinite dimensional
sub-spaces of interest, Pd

X, Pc
X, etc.

q✓

F⇥

PX



Statistical induction

Bayesian nonparametrics

What happens if X is of an infinite nature?

. We could PX
��
F⇥

, but doesn’t resolve the “ random uncertainty ”

. We want models Q giving positive prob. to all elements of PX, or
at least some infinite subset, e.g. set of densities, cdf’s, etc.

. de Finetti’s representation Th. for general X gives an answer...

. Remember: {Xi}1i=n exchangeable is driven by P ⇠ Q

How to construct suitable models for Q (nonparametric priors!)?
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Dirichlet process prior

The Dirichlet distribution

Let Zi
iid⇠ Ga(↵i, 1), i = 1, . . . ,m and W := (W1, . . . ,Wm) with

Wi =
ZiPm
i=1 Zi

, i = 1, . . . ,m ) W ⇠ Dirichlet(↵1, . . . ,↵m)

and is independent of Z :=
Pm

i=1 Zi ⇠ Ga(
Pm

i=1 ↵i, 1) with density

f(w) =
� (
Pm

i=1 ↵i)Qm
i=1 �(↵i)

m�1Y

i=1

w↵i�1
i

 
1�

n�1X

i=1

wi

!↵m�1

I�m�1(w),

where �m�1 :=
n
(w1, . . . , wm�1) : wi � 0,

Pm�1
i=1 wi  1

o



Dirichlet process prior

Properties of Dirichlet distribution

Moments
Let ↵ :=

Pm
i=1 ↵i and pi := ↵i/↵ hence

E[wi] = pi

Var[wi] =
pi(1�pi)

↵+1

Corr[wi, wj ] = � pipj
↵+1

Addition property
If W ⇠ Dirichlet(↵1,↵2, . . . ,↵m) then

i) For any partition A1, . . . , Ak of {1, . . . , n}, the vector

0

@
X

i2A1

wi,
X

i2A2

wi, . . . ,
X

i2Ak

wi

1

A ⇠ Dirichlet(↵0
1, . . . ,↵

0
k)

where ↵0
i :=

P
j2Ai

↵j



Dirichlet process prior

↵1 = ↵2 = ↵3 = 0.2 ↵1 = ↵2 = ↵3 = 1 ↵1 = ↵2 = ↵3 = 5



Dirichlet process prior

Ferguson 1973: The canonical example

1 Via infinite dimensional distributions with pre-scribed fdds

Let ↵ > 0 a non-atomic finite measure on a Polish space (X,X ). A
PX-valued RPM, P, is said to have a Dirichlet process (D↵)
distribution, if for all measurable partition (B1, . . . , Bk) de X

(P(B1), . . . ,P(Bk)) ⇠ Dir(↵(B1), . . . ,↵(Bk))

Ferguson 73’ proved that the Dirichlet dist. is projective and
therefore Daniel-Kolmogorov’s existence theorem ensures the
existence of D↵. Namely, a stochastic process indexed on X .



Dirichlet process prior

The Dirichlet process D↵: The canonical example

Extending the finite-dim properties to the infinite-dim object it can

be seen that if Xi
iid⇠ P and P ⇠ D↵ then

P0(B) := ED↵ [P] =
↵(B)
✓ for B 2 X and where ✓ := ↵(X)

VarD↵ [P(B)] = P0(B)(1�P0(B))
✓+1

Cov(P(B1),P(B2)) =
P0(B1\B2)�P0(B1)P0(B2)

✓+1

If Xi | P
iid⇠ P y P ⇠ D✓P0 , then Xi ⇠ P0, 8 i = 1, 2, . . .

P | X1, . . . , Xn ⇠ D✓P0+nPn ( conjugacy )

E[P | X1, . . . , Xn] =
✓

✓ + n
P0 +

n

✓ + n

nX

i=1

�Xi

n
, (Bayes estimator)

Ferguson (1973)



Dirichlet process prior

The Dirichlet process D↵: Pólya urn representation

2 Specification of Q via predictive distributions.

Q can be characterized by its predictive dist. (Bayes estimator)

P(Xn+1 2 A | X1, . . . , Xn) = E [P(A) | X1, . . . , Xn] =
↵n(A)

↵n(X)
with ↵n(·) = ↵(·) +

Pn
i=1 �Xi(A). In other terms

Prior guess empirical measure

P[Xn+1 2 · | X(n)] =
✓

✓ + n| {z }

z }| {
P0(·) +

n

✓ + n| {z }

z }| {
nX

i=1

�Xi

n
(·) ,

P[Xn+1=“new ” | X(n)] P[Xn+1=“ old ” | X(n)]

Q is a DP i↵ the predictive is a linear combination of P0 and the
empirical measure

Regazzini (1978); Lo (1991)
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2 Specification of Q via predictive distributions.

Q can be characterized by its predictive dist. (Bayes estimator)

P(Xn+1 2 A | X1, . . . , Xn) = E [P(A) | X1, . . . , Xn] =
↵n(A)

↵n(X)
with ↵n(·) = ↵(·) +

Pn
i=1 �Xi(A). In other terms

Prior guess empirical measure

P[Xn+1 2 · | X(n)] =
✓

✓ + n| {z }

z }| {
P0(·) +

n

✓ + n| {z }

z }| {
nX

i=1

�Xi

n
(·) ,

P[Xn+1=“new ” | X(n)] P[Xn+1=“ old ” | X(n)]

Q is a DP i↵ the predictive is a linear combination of P0 and the
empirical measure

Regazzini (1978); Lo (1991)



Dirichlet process prior

The Dirichlet process D↵: Pólya urn representation
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Dirichlet process prior

The Dirichlet process D↵: Pólya urn representation

Blackwell and MacQueen 73’ observed that when n ! 1

↵n()

↵n(X)
a.s.! P, with P ⇠ D↵

! Very appealing for MCMC implementations

! A direct consequence is that

P(Xi = Xj) =
1

✓ + 1
> 0, i 6= j

Blackwell 73’ proved that
• D↵(P : P is discrete ) = 1
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Fuentes-Garćıa, R., Mena, R. H. and Walker, S. G. (2010). A probability for
classification based on the mixture of Dirichlet process model. Journal of

Classification. 27, 389–403.
⇤ Goldstein, M. (2013). Observables and models: exchaengeability and
the inductive argument. In Bayesian Theory and Applications. Damien, P.,
Dellaportas, P., Polson, N. G. and Stephen, D.A. Eds. Oxford University
Press.

Gnedin, A. and Pitman, J. (2006). Exchangeable Gibbs partitions and Stirling
triangles. J. Math. Sci. (N.Y.) 138, 5674-85.



References

References. . .

Gutierrez Inostroza, L., Mena, R.H., Ruggiero, M. (2016). time dependent Bayesian
nonparametric model for air quality analysis. Computational Statistics and Data

Analysis. 95, 161-175.

Gutierrez Inostroza, L., Mena, R.H., and Ruggiero, M. (2016). On GEM di↵usive
mixtures. In JSM Proceedings 2016, Section on Nonparametric Statistics.

Alexandria, VA: American Statistical Association.

Hewitt, E. and Savage, L. J. (1955). Symmetric measures on Cartesian products.
Transactions of the American Mathematical Society, 80, 470–501.
⇤ Ishwaran, H. and James, L.F. (2001). Gibbs sampling methods for
stick-breaking priors. J. Amer. Stat. Assoc., 96, 161–173.

James, L.F., Lijoi, A., and Prünster, I. (2006). Conjugacy as a distinctive feature of
the Dirichlet process. Scandinavian Journal of Statistics, 33, 105–120
⇤ James, L.F., Lijoi, A., and Prünster, I. (2009). Posterior analysis for
normalized random measures with independent increments. Scandinavian

Journal of Statistics, 36, 76–97

Joe, H. (1996). Time series models with univariate margins in the convolution-closed
infinitely divisible class. Journal of Applied Probability. 33, 664–77.

Kallenberg, O. (1973). Canonical representations and convergence criteria for
processes with interchangeable increments. Z. Wahrsch. verw. Geb. 27, 23–36.



References

References. . .

Kallenberg, O. (1975). Infinitely divisible processes with interchangeable increments
and random measures under convolution. Z. Wahrsch. verw. Geb. 32, 309–321.
Kallenberg, O. (1990). Exchangeable random measures in the plane. J. Theor.

Probab. 3, 81–136.
Kalli, M. and Gri�n, J.E. and Walker, S.G. (2011). Slice sampling mixture models.
Statistics and Computing. 21, 93–105.
⇤Kingman, J.F.C. (1975). Random discrete distributions. J. Roy. Statist.

Soc. Ser. B, 37, 1–22.

Kingman, J.F.C. (1978). The representation of partition structures. Journal of the

London Mathematical Society, 18, 374–380.

Kingman, J.F.C. (1993). Poisson processes Oxford University Press.

Lenk, P. J. (1988). The logistic normal distribution for Bayesian nonparametric,
predictive densities. J. Amer. Statist. Asoc., 83, 509–516.

Lijoi, A., Mena, R.H. and Prünster, I. (2005). Bayesian nonparametric estimation of
the probability of discovering new species. JASA, 100, 1278–1291.
⇤ Lijoi, A., Mena, R.H. and Prünster, I. (2007). Controlling the
reinforcement in Bayesian nonparametric mixture models. J. R. Statist.

Soc. B, 69, 715–740.

Lijoi, A. and Prünster, I. (2010). Models Beyond the Dirichlet process. In Bayesian

nonparametrics. (Eds. Hjort, N., Holmes, C., Müller, P. and Walker, S.G.).
Cambridge Univ. Press.



References

References. . .

Lijoi, A., Prünster, I. and Walker, S.G. (2008). Bayesian nonparametric estimators
derived from conditional Gibbs structures. Ann. Appl. Probab., 18, 1519-1547.

Lindley, D. V. and Novick, M. R. (1981). The role of exchangeability in inference.
Annals of Statistics., 9, 45–58.

Lo, A. Y. (1984). On a class of Bayesian nonparametric estimates: I Density
estimates. Annals of Statistics, 12, 351–357.

MacEachern, S.N. (1994). Estimating normal means with a conjugate style Dirichlet
process prior. Commun. Statist. Simulation Comp., 23, 727–741.

MacEachern, S.N. (1998). Computational methods for mixture of Dirichlet process
models. In Practical nonparametric and semiparametric Bayesian statistics (eds D.
Dey, P. Müller and D. Sinha). New York: Springer, 23–43.

MacEachern, S.N. (1999). Dependent nonparametric processes. In ASA Proceedings

of the Section on Bayesian Statistical Science. Alexandria: American Statistical
Association, 50-55.
⇤ Mena, R.H. (2013). Geometric Weight Priors and their Applications in
Bayesian Nonparametrics. In Bayesian Theory and Applications. Damien,
P., Dellaportas, P., Polson, N. G. and Stephen, D.A. Eds. Oxford
University Press.

Mena, R. H. and Walker, S. G. (2005). Stationary autoregressive models via a
Bayesian nonparametric approach. Journal of Time Series Analysis, 26, 789–805.



References

References. . .

Mena, R. H. and Walker, S. G. (2007). On the stationary version of the generalized
hyperbolic ARCH model. Annals of the Institute of Statistical Mathematics. 59,
325–348.

Mena, R. H. and Walker, S. G. (2007). Stationary Mixture Transition Distribution
(MTD) models via predictive distributions. Journal of Statistical Planning and

Inference. 137, 3103–3112.

Mena, R. H. and Walker, S. G. (2009). Construction of Markov processes in
continuous time. Metron. 67, 303-323.
⇤Mena, R.H., Ruggiero, M. and Walker, S. G. (2011). Geometric
stick-breaking processes for continuous-time Bayesian nonparametric
modeling. Journal of Statistical Planning and Inference, 141, 3217-3230.

Mena, R.H., Ruggiero, M. (2016). Dynamic density estimation with di↵usive
Dirichlet mixtures. Bernoulli. 22, 901-926.

Mena, R.H. and Walker, S. G. (2017). Bayesian mixtures of Feller processes.

Müller, P. (2017). Nonparametric Bayesian Mixure Models. In Handbook of
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