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Statistical induction

Random phenomena drive many aspects of this world
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Statistical induction

The basic probabilistic setup

• (⌦,A,P): Probability space

. ⌦ –sample space. Set of all possible outcomes

. A –�-field. Collection of subsets of ⌦ with all events of interest

. P : A 7! [0, 1] –Probability measure. Mathematically coherent
measure to quantify all events A 2 A

• Features of interest can be translated into “ numeric ” quantities via

. (X,X )-valued functions, X : ⌦ 7! X. random variables (r.v.’s)

• Given a r.v. X, the set function defined by

PX(B) = P(X�1(B)), for all B 2 X (1)

is termed the distribution or law of the random variable X.

. When X = R and B = (�1, x] we write

FX(x) = PX((�1, x]) = P(X  x) ! the (cdf) of X
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Statistical induction

Ex. toss a coin

⌦ = {head, tail} = {!1,!2} = {0, 1}

A = {⌦, {0}, {1}, ;}

Let X the r.v. that assigns 1 if the outcome is tail and 0 otherwise,
i.e. PX({1}) = P(X(!1) = 1) with X = {0, 1}

• For such quantity, we might assign a value ✓ 2 [0, 1], i.e.

PX({1}) = ✓

) Uncertainty about X is transferred to the parameter of interest ✓.

How can we improve our knowledge about ✓ in the presence of
observations from the random phenomena?



Statistical induction

The basic setup

• Availability of more info about a random phenomenon

) better uncertainty quantification

) better statistical induction

• Realizations of a given phenomenon encoded via r.v.’s {Xi}i2I
. Logical/physical independence 6) stochastic independence

so P(Xn+1 2 B | X1, . . . , Xn) = P(Xn+1 2 B) not always a good idea!

. Statistical learning requires stochastic dependence !

Under physical independence all we can assume is certain stochastic
symmetry among {Xi}i2I
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Statistical induction

The basic setup

• Symmetry/Stability principles in the law modelling {Xi}’s are
fundamental for statistical induction

. e.g. the past and future have similar behaviour

• Major symmetries used in statistics

. IID r.v.’s: physical & stochastic independence (rare in real apps!)

. Exchangeability: physical indep. + sampling order invariace!

. Stationarity: Uncertainty is not “ time ” invariant

“ . . . practitioners seem to prefer the language of populations:
theoreticians, that of exchangeability ”

Lindley and Novick, 1981.
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Statistical induction

Exchangeable sequences

A finite sequence of r.v.’s, {Xn}ni=1, is said to be finite exchangeable if,
for any permutation ⇡ of (1, . . . , n)

(X1, . . . , Xn)
d
= (X⇡(1), . . . , X⇡(n))

An infinite sequence {Xn}1i=1 is said to be exchangeable if every

subcollection is exchangeable.

⇡ Distributional invariance under sampling order

. What can we say about the law of an exchangeable sequence

. B. de Finetti’s representation characterises exchangeable sequences



Statistical induction

de Finetti’s representation Theorem: X = {0, 1} case

• B. de Finetti 1931: A seq. of binary r.v.’s {Xi}1i=1, e.g. with values
in X = {0, 1}, is exchangeable i↵ there exists a dist. q on [0, 1]

P(X1 = x1, . . . , Xn = xn) =

Z

[0,1]
✓sn(1� ✓)n�snq(d✓)

where sn :=
Pn

i=1 xi.

q(·) is the distribution of limn!1
sn
n

Conditional independence

P(X1 = x1, . . . , Xn = xn | ✓) =
nY

i=1

P(Xi = xi | ✓) = ✓sn(1� ✓)n�sn

This decomposition in “ conditionally independent sample ” given
a random parameter “ ✓ ” justifies the Bayesian approach
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Statistical induction

Example: {Xi}1i=1 be Bernoulli r.v.’s

Two di↵erent Bernoulli exchangeable laws by two di↵erent persons

P(x1, . . . , xn) =
12

sn + 2

1� n+4
sn+2

� and P(x1, . . . , xn) =
1

[n+ 1]
� n
sn

� ,

. These persons believe that P(X1 = 1) = 0.4 & P(X1 = 1) = 0.5 resp.

. Both believe that ⇥ := lim
n!1

1
n

nP
i=1

Xi exists & P(X1 = 1 | ⇥ = ✓) = ✓

. Since P(X1 = 1) = E(⇥) they must have di↵erent values for E(⇥)

. Assume we observe the result of n = 20 given by 14 “ 1s ” and 6 “ 0s ”.

P[X21 | x1, . . . , x20] = 0.64 and P[X21 | x1, . . . , x20] = 0.68.

• Regardless of the prior mean on ⇥, they should modify their opinion
about the prop. of 1’s!

• Consequence due to exchangeability, regardless of frequencies being
interpreted as probabilities.

Schervish, 1995.



Statistical induction

In Bayesian terms
If X is a r.v. on X = {1, 2} with prob. p1 and p2 = 1� p1 assigned to
each element of X. That is {X | p1, p2} ⇠ Bernoulli(p1, p2)

Each value of p = (p1, p2) defines probability measure on X
q = Be(↵1,↵2) defines a probability measure on

PX := {Space of prob. measures on X}={(p1, p2); pi � 0 y p1 + p2 = 1}

) p1 | X(n) ⇠ Be

 
↵1 +

nX

i=1

�Xi({1}),↵2 +
nX

i=1

�Xi({2})
!

. If X = {1, 2, . . . ,K} then X | (p1, p2, . . . , pk) ⇠
Qk

i=1 p
�X({i})
i

PX ={(p1, . . . , pk); pi � 0 y p1 + · · ·+ pk = 1}

)(p1, p2, . . . , pk) |X(n)⇠Dirichlet(↵1+
nX

i=1

�Xi({1}), . . . ,↵k+
nX

i=1

�Xi({k}))

One parameter per value in the support X !



Statistical induction

In Bayesian terms
If X is a r.v. on X = {1, 2} with prob. p1 and p2 = 1� p1 assigned to
each element of X. That is {X | p1, p2} ⇠ Bernoulli(p1, p2)

Each value of p = (p1, p2) defines probability measure on X
q = Be(↵1,↵2) defines a probability measure on

PX := {Space of prob. measures on X}={(p1, p2); pi � 0 y p1 + p2 = 1}

) p1 | X(n) ⇠ Be

 
↵1 +

nX

i=1

�Xi({1}),↵2 +
nX

i=1

�Xi({2})
!

. If X = {1, 2, . . . ,K} then X | (p1, p2, . . . , pk) ⇠
Qk

i=1 p
�X({i})
i

PX ={(p1, . . . , pk); pi � 0 y p1 + · · ·+ pk = 1}

)(p1, p2, . . . , pk) |X(n)⇠Dirichlet(↵1+
nX

i=1

�Xi({1}), . . . ,↵k+
nX

i=1

�Xi({k}))

One parameter per value in the support X !



Statistical induction

In Bayesian terms
If X is a r.v. on X = {1, 2} with prob. p1 and p2 = 1� p1 assigned to
each element of X. That is {X | p1, p2} ⇠ Bernoulli(p1, p2)

Each value of p = (p1, p2) defines probability measure on X
q = Be(↵1,↵2) defines a probability measure on

PX := {Space of prob. measures on X}={(p1, p2); pi � 0 y p1 + p2 = 1}

) p1 | X(n) ⇠ Be

 
↵1 +

nX

i=1

�Xi({1}),↵2 +
nX

i=1

�Xi({2})
!

. If X = {1, 2, . . . ,K} then X | (p1, p2, . . . , pk) ⇠
Qk

i=1 p
�X({i})
i

PX ={(p1, . . . , pk); pi � 0 y p1 + · · ·+ pk = 1}

)(p1, p2, . . . , pk) |X(n)⇠Dirichlet(↵1+
nX

i=1

�Xi({1}), . . . ,↵k+
nX

i=1

�Xi({k}))

One parameter per value in the support X !



Statistical induction

In Bayesian terms
If X is a r.v. on X = {1, 2} with prob. p1 and p2 = 1� p1 assigned to
each element of X. That is {X | p1, p2} ⇠ Bernoulli(p1, p2)

Each value of p = (p1, p2) defines probability measure on X
q = Be(↵1,↵2) defines a probability measure on

PX := {Space of prob. measures on X}={(p1, p2); pi � 0 y p1 + p2 = 1}

) p1 | X(n) ⇠ Be

 
↵1 +

nX

i=1

�Xi({1}),↵2 +
nX

i=1

�Xi({2})
!

. If X = {1, 2, . . . ,K} then X | (p1, p2, . . . , pk) ⇠
Qk

i=1 p
�X({i})
i

PX ={(p1, . . . , pk); pi � 0 y p1 + · · ·+ pk = 1}

)(p1, p2, . . . , pk) |X(n)⇠Dirichlet(↵1+
nX

i=1

�Xi({1}), . . . ,↵k+
nX

i=1

�Xi({k}))

One parameter per value in the support X !



Statistical induction

In Bayesian terms
If X is a r.v. on X = {1, 2} with prob. p1 and p2 = 1� p1 assigned to
each element of X. That is {X | p1, p2} ⇠ Bernoulli(p1, p2)

Each value of p = (p1, p2) defines probability measure on X
q = Be(↵1,↵2) defines a probability measure on

PX := {Space of prob. measures on X}={(p1, p2); pi � 0 y p1 + p2 = 1}

) p1 | X(n) ⇠ Be

 
↵1 +

nX

i=1

�Xi({1}),↵2 +
nX

i=1

�Xi({2})
!

. If X = {1, 2, . . . ,K} then X | (p1, p2, . . . , pk) ⇠
Qk

i=1 p
�X({i})
i

PX ={(p1, . . . , pk); pi � 0 y p1 + · · ·+ pk = 1}

)(p1, p2, . . . , pk) |X(n)⇠Dirichlet(↵1+
nX

i=1

�Xi({1}), . . . ,↵k+
nX

i=1

�Xi({k}))

One parameter per value in the support X !



Statistical induction

Prior to posterior e↵ect



Statistical induction

Exchangeable sequences: general X
• Let PX be the space of all probability measures on (X,X )

A seq. {Xi}1i=1 is exchangeable i↵ there exists Q on PX such that

P(X1 2 A1, . . . , Xn 2 An) =

Z

PX

nY

i=1

P(Ai)Q(dP), 8n � 1 and Ai 2 X

Alternatively: Xi | P
iid⇠ P and P ⇠ Q (conditionally iid) .

Hewitt and Savage 1955

. If Pn(A) := 1
n

Pn
i=1 �Xi(A) denotes the empirical dist. hence, Q is

the dist. of the RPM P, where P[Pn ) P] = 1 (P ⇠ Q)

. Q is unique

. “The unknown ”, P, that allows us to disaggregate the elements
of X(1) as a conditional iid sample, is random.



Statistical induction

Consequences of de Finetti’s representation

There is a clear bijection between the law of {Xi}1i=1 and Q

Pick Q ) we have a law for {Xi}1i=1

Pick a law for {Xi}1i=1 ) there exist a unique Q

i.e. P[Xn+1 2 A | X(n)] = EQ
X(n)

[P(A)] characterizes Q with

QX(n)(B) := P(P 2 B | X(n)),

However, any P 2 PX can be seen as the limit of Pn!

Bayesian interpretation:
Q takes the interpretation of prior distributions on P

Probabilistically speaking the Bayesian approach is equivalent to the
exchangeability assumption of the {Xi}1i=1
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de Finetti and the Bayesian approach

The law of the exchangeable r.v’s (and thus Q) is characterized by the
conditional probabilities (or predictive distributions)

P [Xn+1 2 An+1 | X1 2 A1, . . . , Xn 2 An] =

EQ


n+1Q
i=1

P(Ai)

�

EQ


nQ

i=1
P(Ai)

�

= EQ
X(n)

[P(An+1)]

for all n > 1, with P0 := P[X1 2 A1] = EQ[P(A1)] and where

QX(n)(dP) =

nQ
i=1

P(Ai)Q(dP)

EQ


nQ

i=1
P(Ai)

� , (dominated case)

the posterior distribution of P given X(n) := (X1, . . . , Xn)



Statistical induction

Exchangeability: statistical learning for physically
independent observations

Random phenomena encoded in X-valued {Xi}1i=1 exchangeable
sequence driven by P ⇠ Q

Q(·) = �q✓(·) ) Xi’s are iid

P(X1 2 A1, . . . , Xn 2 An) =

Z

PX

nY

i=1

P(Ai) �q✓(dP) =
nY

i=1

q✓(Ai)

PX : Space of all distributions on X

q✓



Statistical induction

Exchangeability: statistical learning for physically
independent observations

Random phenomena encoded in X-valued {Xi}1i=1 exchangeable
sequence driven by P ⇠ Q

Q(F⇥) = 1 ) Parametric family
Epistemic
uncertainty

P(X1 2 A1, . . . , Xn 2 An) =

Z

F⇥

nY

i=1

F✓(Ai)| {z }
z }| {
⇡✓(d✓)

Random
uncertainty via
param. model

PX : Space of all distributions on X
q✓

F⇥



Statistical induction

Exchangeability: statistical learning for physically
independent observations

Random phenomena encoded in X-valued {Xi}1i=1 exchangeable
sequence driven by P ⇠ Q

Q(P : d(P, ⌘) < ") > 0, 8 ⌘ 2 PX y " > 0 ) BNP

P(X1 2 A1, . . . , Xn 2 An) =

Z

PX

nY

i=1

P(Ai)Q(dP)| {z }
Random and
epistemic uncertainties
in one stroke!

PX : Space of all distributions on X
. . . or other infinite dimensional
sub-spaces of interest, Pd

X, Pc
X, etc.

q✓

F⇥

PX



Statistical induction

Bayesian nonparametrics

What happens if X is of an infinite nature?

. We could PX
��
F⇥

, but doesn’t resolve the “ random uncertainty ”

. We want models Q giving positive prob. to all elements of PX, or
at least some infinite subset, e.g. set of densities, cdf’s, etc.

. de Finetti’s representation Th. for general X gives an answer...

. Remember: {Xi}1i=n exchangeable is driven by P ⇠ Q

How to construct suitable models for Q (nonparametric priors!)?
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Dirichlet process prior

The Dirichlet distribution

Let Zi
iid⇠ Ga(↵i, 1), i = 1, . . . ,m and W := (W1, . . . ,Wm) with

Wi =
ZiPm
i=1 Zi

, i = 1, . . . ,m ) W ⇠ Dirichlet(↵1, . . . ,↵m)

and is independent of Z :=
Pm

i=1 Zi ⇠ Ga(
Pm

i=1 ↵i, 1) with density

f(w) =
� (
Pm

i=1 ↵i)Qm
i=1 �(↵i)

m�1Y

i=1

w↵i�1
i

 
1�

n�1X

i=1

wi

!↵m�1

I�m�1(w),

where �m�1 :=
n
(w1, . . . , wm�1) : wi � 0,

Pm�1
i=1 wi  1

o



Dirichlet process prior

Properties of Dirichlet distribution

Moments
Let ↵ :=

Pm
i=1 ↵i and pi := ↵i/↵ hence

E[wi] = pi

Var[wi] =
pi(1�pi)

↵+1

Corr[wi, wj ] = � pipj
↵+1

Addition property
If W ⇠ Dirichlet(↵1,↵2, . . . ,↵m) then

i) For any partition A1, . . . , Ak of {1, . . . , n}, the vector

0

@
X

i2A1

wi,
X

i2A2

wi, . . . ,
X

i2Ak

wi

1

A ⇠ Dirichlet(↵0
1, . . . ,↵

0
k)

where ↵0
i :=

P
j2Ai

↵j



Dirichlet process prior

↵1 = ↵2 = ↵3 = 0.2 ↵1 = ↵2 = ↵3 = 1 ↵1 = ↵2 = ↵3 = 5



Dirichlet process prior

Ferguson 1973: The canonical example

1 Via infinite dimensional distributions with pre-scribed fdds

Let ↵ > 0 a non-atomic finite measure on a Polish space (X,X ). A
PX-valued RPM, P, is said to have a Dirichlet process (D↵)
distribution, if for all measurable partition (B1, . . . , Bk) de X

(P(B1), . . . ,P(Bk)) ⇠ Dir(↵(B1), . . . ,↵(Bk))

Ferguson 73’ proved that the Dirichlet dist. is projective and
therefore Daniel-Kolmogorov’s existence theorem ensures the
existence of D↵. Namely, a stochastic process indexed on X .
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The Dirichlet process D↵: The canonical example

Extending the finite-dim properties to the infinite-dim object it can

be seen that if Xi
iid⇠ P and P ⇠ D↵ then

P0(B) := ED↵ [P] =
↵(B)
✓ for B 2 X and where ✓ := ↵(X)

VarD↵ [P(B)] = P0(B)(1�P0(B))
✓+1

Cov(P(B1),P(B2)) =
P0(B1\B2)�P0(B1)P0(B2)

✓+1

If Xi | P
iid⇠ P y P ⇠ D✓P0 , then Xi ⇠ P0, 8 i = 1, 2, . . .

P | X1, . . . , Xn ⇠ D✓P0+nPn ( conjugacy )

E[P | X1, . . . , Xn] =
✓

✓ + n
P0 +

n

✓ + n

nX

i=1

�Xi

n
, (Bayes estimator)

Ferguson (1973)



Dirichlet process prior

The Dirichlet process D↵: Pólya urn representation

2 Specification of Q via predictive distributions.

Q can be characterized by its predictive dist. (Bayes estimator)

P(Xn+1 2 A | X1, . . . , Xn) = E [P(A) | X1, . . . , Xn] =
↵n(A)

↵n(X)
with ↵n(·) = ↵(·) +

Pn
i=1 �Xi(A). In other terms

Prior guess empirical measure

P[Xn+1 2 · | X(n)] =
✓

✓ + n| {z }

z }| {
P0(·) +

n

✓ + n| {z }

z }| {
nX

i=1

�Xi

n
(·) ,

P[Xn+1=“new ” | X(n)] P[Xn+1=“ old ” | X(n)]

Q is a DP i↵ the predictive is a linear combination of P0 and the
empirical measure

Regazzini (1978); Lo (1991)
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Dirichlet process prior

The Dirichlet process D↵: Pólya urn representation

Blackwell and MacQueen 73’ observed that when n ! 1

↵n()

↵n(X)
a.s.! P, with P ⇠ D↵

! Very appealing for MCMC implementations

! A direct consequence is that

P(Xi = Xj) =
1

✓ + 1
> 0, i 6= j

Blackwell 73’ proved that
• D↵(P : P is discrete ) = 1
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