
LECTURE1
INTRODUCTION

. . . practitioners seem to prefer the language of populations;

theoreticians, that of exchangeability

Lindley and Novick, 1981

1.1. Unveiling the uncertainty: An attempt to motivate Statistics in a short lecture

Random phenomena drive many aspects of this world, including life itself, the global economy, weather conditions, and
more. How can we improve our chances of having a better life, prepare for an unfortunate contingency, or simply have
a wealthier bank account? It all starts with the proper quantification of the uncertainties driving such phenomena. By
understanding and quantifying such uncertainties, one might be able to establish a robust statistical induction process that
allows us to learn, uncover, and predict important features about the phenomena under study. This is precisely the main
challenge addressed by the theories of probability and statistics.

As interpreted by some authors, e.g. Goldstein (2013), the uncertainty of random phenomena can be due to aleatory and
epistemic causes. Epistemic uncertainty is that related to lack of information, that can potentially be resolved by the arrival
of new information, whereas aleatory uncertainty relates to the variational nature intrinsic to the phenomenon or targeted
population under study. This classification is directly related to the potential scope of a statistical induction process, e.g.
while an air pollution contingency day could be potentially avoided or predicted, a hurricane cannot be handled with the
same degree of certainty. See Figure 1.1. To some extent, such a classification is not precise, as there is the line of thinking
that supports that all uncertainty concerns with a lack of information, uncertainty that we need to quantify and can have a
finite or infinite dimensional nature. We will come back to this point later.

From the mathematical perspective the theory of statistics uses probabilistic models to provide a solution to the problem
of statistical induction on random phenomena. Indeed, the basic mathematical setup starts with a triplet (⌦,A,P), termed
probability space, where ⌦ denotes the set of all possible outcomes of the phenomenon or experiment under study, here
termed the sample space; A is a collection of subsets of ⌦ including all events of interest which constitutes a �-field1, and
P : A 7! [0, 1] termed probability measure which satisfies P(A) � 0 for all events A 2 A with P(⌦) = 1 and

P
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Ai

!
=

1X

i=1

P(Ai)

for disjoint events A1, A2, . . . 2 A. In words, P(·) constitutes a coherent way to quantify all uncertain events of interest.
Within such a framework, a feature of interest, regarding the underlying random phenomenon or experiment, can be

translated into “ numeric ” quantities through (X,X )-valued functions, X : ⌦ 7! X, termed random variables (r.v.’s),
satisfying X�1(B) := {! 2 ⌦ : X(!) 2 B} 2 A for every B 2 X . This latter condition states that the event at issue
is a true event, element of A, that can be measured by P, i.e. X is simply a measurable function. Here (X,X ) is also a

1(i) ; 2 A, (ii) A 2 A ) Ac 2 A and (iii) A1, A2, . . . 2 A ) [1
i=1Ai 2 A. We can always consider A sufficiently large to include all events

to which we are willing to compute probabilities
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measure space representing the possible values the random variable X can take and it is endowed with its Borel �-field,
X . It is worth noting that the nature of X gives rise to a classification for the generic term of random variable, e.g. random
vectors, random variables, random manifolds, random functions, etc.

Given a random variable X one can define the set function

PX(B) = P(X�1(B)), for all B 2 X (1.1)

known generically as the distribution or law of the random variable X . In particular, when X = R and B = (�1, x] then
we write FX(x) = PX((�1, x]) = P(X  x) and name it the cumulative distribution function (cdf) of X . In the most
common settings, one assumes that (1.1) is absolutely continuous with respect to a �-finite reference measure on (X,X ),
e.g. �, typically the Lebesgue measure, or with respect to the counting measure. In such cases we will work with the
corresponding density function or mass probabilities, generically denoted by

fX(x) =
dPX

d�
(x)

Example 1. A didactic and historical example to introduce such concepts is to consider the outcome of flipping a coin.

This has two possible outcomes, “ head ” or “ tail ”. Hence we can construct ⌦ = {head, tail} = {!1,!2} = {0, 1}
with A = {⌦, {0}, {1}, ;}. Let X the random variable that assigns 1 if the outcome is tail and 0 otherwise. Hence

PX({1}) = P(X(!1) = 1). For this later quantity, we might assign a value, say ✓ 2 [0, 1], i.e. PX({1}) = ✓.

In the above example, clearly the uncertainty underlying X , quantified through a probability measure, has been trans-
ferred to ✓, i.e. the parameter of interest. Here the notion of statistics arises naturally, namely, how can we improve our
knowledge about ✓ in the prescience of observations from the random phenomena, here modelled through the random vari-
able X . Historically, a way to resolve this quantification of uncertainty problem is through the assumption of a parametric
family of probability measures

PO = {P✓ : 8B 2 X ,P✓(B) = P(X 2 B | ⇥ = ✓), for ✓ 2 O.} (1.2)

Here, O denotes an arbitrary topological space, typically a finite or countable set, an Euclidean space or a Polish space.
In this way, n observations of the random phenomena under study could be assumed as distinct realizations of the

random variable X , namely X1, . . . , Xn. Therefore, under the assumption that no causality alters the observations among
each other one typically says that observations are independent. This latter statement has to be taken with care, having
observations with no-physical relation, say physically independent, does not necessarily imply that the set of random
variables X1, . . . , Xn, which model such observations, are stochastically independent. Indeed, statistical learning among
observations demands stochastic dependence among the r.v.’s modelling replications of the random phenomena. In other
words, statistical learning can only take place if X1, . . . , Xn are stochastically connected. All that the physical indepen-
dence among observations implies is a symmetry among X1, . . . , Xn, namely the law of these random variables is not
affected by the order in which they are sampled. See Walker (2013) for a similar way of reasoning.

Hence, when one tries to apply a probabilistic model to the uncertainties mentioned at the beginning of this section, cf.
Figure 1.1, the aleatory uncertainty can be interpreted as the parametric family, PO, assumed as the universe of all available
models. In other words, within such a setting, one can only learn about the only remaining source of variation, i.e. the
parameter, ✓ 2 O. The parametric form driving X , (1.2), has been taken for granted. On the other hand, the epistemic
uncertainty, represented by ✓, could be resolved with the arrival of more information.

In classical statistical inference one typically assumes a parametric family, as in (1.2), to model the random uncertainty,
and transfer all epistemic uncertainty to the value for the parameter ✓, which is assumed to be fixed but unknown. Therefore,
data-based inference about ✓, resolves the controversy about which P 2 PO fits best to the data but provides no learning
beyond PO. As it will be clarified later, this also relates to the fact that, within this approach,

P(Xn+1 2 B | X1, . . . , Xn) = PX(Xn+1 2 B),

that is, there is no statistical learning in the model. It is worth stressing that stochastic dependence does not necessarily
compromises the potential physical-independence inherent to the actual observations.
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In principle, one could widen the space PO to the extreme case of considering the space of all probability measures
on (X,X ), here denoted by PX, namely one could consider X1, . . . , Xn independently and identically distributed (iid)
from an unknown distribution P, however parametrising such a space via a finite dimensional parameter is not possible.
In particular, this latter case would result in the lack of likelihood function and thus, estimators such as the maximum
likelihood estimator (MLE), would not be available.

Depending of the nature of the random phenomena under study, observations or measurements might be physically
independent or might have some clear dependence, e.g. via and ordered index set such as time series observations collected
from a phenomenon evolving in time. This poses a natural tradeoff between the assumed stochastic dependence among the
r.v.’s, modelling such phenomena, and the choice and/or generality of (1.2). As mentioned above, when no clear physical
dependence is present, the natural stochastic connection is that which is invariant under different sampling order.

1.2. Exchangeability as a statistical learning model

If the point of departure is the probabilistic modeling of observations physically independent through a sequence of r.v.’s
(X1, . . . , Xn), without making further assumptions about the model then the proper probabilistic framework is the one
provided by the distributional symmetry.

Definition 1. A finite set {Xi}ni=1 of random variables is said to be finite exchangeable if

{X1, . . . , Xn}
d
= {X⌧(1), . . . , X⌧(n)}

for any permutation ⌧ of {1, . . . , n}. An infinite collection {Xi}1i=1 is said to be exchangeable if every subcollection is
exchangeable.

The above definition only says that exchangeability equals to distributional invariance under label permutations. The
following result constitutes an historically didactic example

Theorem 1. (de Finetti’s Representation Theorem for binary variables)

An infinite sequence of X := {0, 1}-valued random variables, {Xi}1i=1, is said to be exchangeable if and only if there exist

a distribution q on [0, 1] such that for all n � 1

P(X1 = x1, . . . , Xn = xn) =

Z

[0,1]
✓sn(1� ✓)n�sn q(d✓)

where sn :=
Pn

i=1 xi denotes the number of sucesses. Furthermore, q is such that its cdf is

q(t) = lim
n!1

P
✓
Sn

n
 t

◆
.

Namely,

Sn

n
a.s.! ⇥ with ⇥ := lim

n!1

Sn

n
,

the (strong-law) limiting relative frequency of 1s.

Proof. (Heath and Sudderth (1976)) By exchangeability, for 0  sn  n

P(Sn = sn) =

✓
n

sn

◆
P(x1, . . . , xn) =

✓
n

sn

◆
P(x⌧(1), . . . , x⌧(n))

for any permutation ⌧ of {1, . . . , n}. Namely, for the
� n
sn

�
vectors of n trials with exactly sn successes (1s) and n � sn

failures (0s) we have the same probability. This clearly simplifies the specification of the 2n potential probabilities, i.e. that
would be potentially different without the assumption of exchangeability.
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Also, due to exchangeability, for any N such that N � n � sn � 0

P[Sn = sn] =
X

(⇤)

P[Sn = sn | SN = sN ]P[SN = sN ]

where P[SN = sN ] stands for the probability that the total number of successes, SN , is equal to sN , and the range of the
summation (⇤) extends over (sn, . . . , N � (n� sn)). Now

P[Sn = sn | SN = sN ] =

�sN
sn

��N�sN
n�sn

�
�N
n

� , 0  sn  n

=
(sN )sn(N � sN )n�sn

(N)n
,

that is the hypergeometric mass function, Hyp(N, sN , n). In the second equality above we have used the notation with the
descending factorial (or Pochhammer symbol) (x)r = x(x� 1) · · · (x� r + 1). Hence

P[Sn = sn] =

✓
n

sn

◆X (sN )sn(N � sN )n�sn

(N)n
P[SN = sn]

Define the function qN (✓) on R as the step function which is zero for ✓ < 0, with height P[SN = sn] at ✓ = sn/N . Hence,
using Lebesgue integral notation we have

P[Sn = sn] =

✓
n

sn

◆Z 1

0

(✓N)sn((1� ✓)N)n�sn

(N)n
dqN (✓)

So, letting N ! 1 we get

(✓N)sn((1� ✓)N)n�sn

(N)n
! ✓sn(1� ✓)n�sn =

nY

i=1

✓xi(1� ✓)1�xi

since (x)r ! xr when x ! 1 for r fixed. Noticing that qN (t) is a step function with N steps of varying sizes particular
values of t. Applying Helly Theorem , there is a sequence {qN (✓);N = 1, 2, . . .} that has a convergent subsequence
{qNj (✓)} such that, for some distribution q

lim
j!1

qNj (✓) = q✓

Then the result follows.

The representation theorem by de Finetti, changes the basic idea that probabilities are just frequencies of an infinite
number of observations. Indeed, Theorem (1) says that the quantity that allows us to see the probabilities of distinct
replicates of our random phenomena as independent is indeed random. More specifically, the limit of frequencies, i.e. ⇥, is
only a conditional probability of information not yet available. This supports the idea that such “ probabilities of success ”,
under the exchangeability assumption, can be computed subjectively. In order to set ideas, let us borrow the following
example from Schervish (1995), from where we have also stolen part of this discussion.

Example 2. Let {Xi}1i=1 be Bernoulli r.v.’s and consider the two different exchangeable laws, corresponding to two differ-

ent persons, given by

P(X1 = x1, . . . , Xn = xn) =
12

sn + 2

1� n+4
sn+2

� and P(X1 = x1, . . . , Xn = xn) =
1

[n+ 1]
� n
sn

� ,

respectively, with sn =
Pn

j=1 xj , for all n � 1. Hence, the first person believes that P(X1 = 1) = 0.4 and the second that

P(X1 = 1) = 0.5. Now, due to exchangeability, both persons believe that ⇥ := limn!1
1
n

Pn
i=1Xi exists almost surely
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and that P(X1 = 1 | ⇥ = ✓) = ✓. But, as we will see later P(X1 = 1) = E(⇥) and so these persons must have different

values for E(⇥).
Now assume that both persons observe the result of n = 20 given by 14 “ 1s ” and 6 “ 0s ”. Then

P[X21 | x1, . . . , x20] = 0.64 and P[X21 | x1, . . . , x20] = 0.68.

Notice, how the difference shortens after using some observations and at the same time gets closer to the proportion

of successes, regardless of the prior mean of ⇥. This tells us that we should modify our opinion, about the proportion of

successes, after observations are performed. Such a consequence is merely due to exchangeability, regardless of frequencies

being interpreted as probabilities.

We have stated de Finetti’s representation theorem in its simpler form, namely when X = {0, 1}, before further
discussing the consequences of such as celebrated result, let us state it in its more general form, i.e. when X is Polish. As
before, denote by PX the space of all probability measures on (X,X ), endowed with the �-algebra PX, generated by the
topology of weak convergence.

Theorem 2. Let X be a Polish space endowed with is Borel �-field X and PX the space of all probability measures on

(X,X ). An infinite sequence of X-valued r.v.’s, {X}1i=0 is exchangeable if and only if there exist Q on (PX,PX) such that

P[X1 2 A1, . . . , Xn 2 An] =

Z

PX

nY

i=1

P(Ai)Q(dP) (1.3)

for all n � 1 and Ai 2 X .

For a proof of this general version of de Finetti’s representation theorem we refer to Schervish (1995).
Theorem 2 can be alterantively stated as the existence of a (PX,PX)-valued random variable P, distributed as Q, such

that

P[X1 2 A1, . . . , Xn 2 An | P] =
nY

i=1

P(Ai)

namely, conditional on , the random variables {X}1i=0 are iid. Clearly, due to the potential uncountable nature of X, the
form of the conditional probabilities cannot always be simplified as in the X = {0, 1} case, where the random probability
measure (RPM) P is equivalent to the random variable ⇥ 2 [0, 1], where ⇥ = P({1}). As in the binary case, it can be seen
that, if we let

Pn(A) :=
1

n

nX

i=1

�Xi(A), A 2 X ,

be the empirical measure, hence the measure Q is the distribution of the RPM, P, where P(Pn ) P) = 1, with ) denoting
convergence in distribution. Furthermore, given an infinite sequence of exchangeable random variables, Q is unique. The
distribution Q is sometimes referred to as the de Finetti’s measure driving an exchangeable sequence.

The above discussion of Theorem 1 also follows in this case, thus, it serves as a justification of the subjective view of
Bayesian statistics. In other words, exchangeability justifies the existence of a random parameter instead of a fixed one.
Furthermore, since virtually any P 2 PX can be seen as the limit of empirical measures, Pn, probabilities must then be
computed on subjective judgments. With this, specifying an exchangeable sequence via a particular choice of de Finetti’s
measure, Q, can be interpreted as choosing a prior distribution on the random parameter, i.e. ⇥ or P, representing our
ignorance about the phenomenon under study.

1.3. The Bayesian approach to inference

Equality (2) shows a duality between the finite dimensional distributions (fidis) corresponding to an infinite exchangeable
sequence {Xi}1i=1 and de Finetti’s measure Q. Hence, to improve our knowledge about the driving mechanism of {Xi}1i=1,
in the light of observations, we could improve our knowledge about the law of ⇥ or P, i.e. Q.
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1.3.1. The parametric case.

With the above purpose in mind one could consider a simplification. That is, instead of considering the space of all
probability measures, PX, we could restrict it to a finite parameter case, through a parametric family, PO. In other terms
Q(PO) = 1. By doing this, the fidis of an exchangeable sequence, {Xi}1i=1, can be specified by a choice of a parametric
model, say P✓ 2 PO, and a prior distribution q on (O,BO), that is

P[X1 2 A1, . . . , Xn 2 An] =

Z

O

(
nY

i=1

P✓(Ai)

)
q(d✓), for all n � 0 and Ai 2 X . (1.4)

From the aforementioned duality one could immediately deduce that predictive probabilities can be found as

P[Xn+1 2 Ai+1 | X1 2 A1, . . . , Xn 2 An] =
P[X1 2 A1, . . . , Xn+1 2 An+1]

P[X1 2 A1, . . . , Xn 2 An]

=
Eq

hQn+1
i=1 P⇥(Ai)

i

Eq [
Qn

i=1 P⇥(Ai)]

= Eq
X(n)

[P⇥(An+1)] , (1.5)

for all n � 1, Ai 2 X , and where

qX(n)(d✓) =

Qn
i=1 P✓(Ai)q(d✓)

Eq [
Qn

i=1 P⇥(Ai)]
/

nY

i=1

P✓(Ai) q(d✓) (1.6)

is termed the posterior distribution for the random parameter ⇥ given the sample X(n) := (X1, . . . , Xn). Depending on
the context, and for the ease of notation, the above measure will sometimes be denoted by qn(·) or q(✓ | x(n)). In (1.4), the
term in brackets is referred as the likelihood for the given parametric model. The conditional probability (1.6) can be seen
as a result of Bayes rule for the given likelihood and prior distribution. Indeed, in a hierarchical notation one can depict
the dependence structure induced by (1.4) through

Xi | ⇥
iid⇠ P⇥, i = 1, . . . , n (1.7)

⇥ ⇠ q

which is the most common setup to specify a Bayesian model.
Assuming the existence of densities for (1.6), upon observing that X(n) = x(n), the updated knowledge about the

distribution of ⇥ is given by

q(✓ | x(n)) /
(

nY

i=1

f⇥|X(✓ | xi)
)
q(✓)

and all inferences about ⇥ must be derived from it (the Bayesian paradigm). The posterior distribution allows us to infer
about any feature of intrest regarding the parameter, e.g. mean, variance, hypothesis testing, etc. In principle, this makes
the Bayesian approach appealing to perform statistical induction about the epistemic uncertainty, once PO (the random

uncertainty represented by the model) is fixed. However various complications arise, e.g. which family PO shall we
restrict on, the posterior is difficult to obtain analytically or difficult to handle numerically, etc. The literature treating the
parametric Bayesian approach is vast, see for instance Robert (2001) and many of the references therein.

1.3.2. The nonparametric case: a reduction of subjectivity

If we avoid the above simplification, namely we undertake the more general framework where PX has an infinite dimen-
sional character, then we shall term such an approach to inference as Bayesian nonparametric (BNP). When X is finite,
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such as the binary case encountered in Theorem 1, the space PX takes a simpler form, e.g. the space of Bernoulli distri-
butions, and thus the need of such simplification is futile. Also, such cases are already treated under the umbrella of the
parametric case.

Framing the general approach of Theorem 2 in the statistical induction discussion of Section 1.1, one immediately
realises that one could learn about both the epistemic and the aleatory uncertainty driving the random phenomena under
study, when undertaking the BNP approach. Namely, we do not only learn about a finite dimensional parameter resulting
of restricting PX, but rather we learn about the whole infinite dimensional structure behind it. Having said this, it is good
to emphasise that the subjectivity is not removed but rather reduced to the solely choice of de Finetti’s measure Q.

Just as in the parametric case, one could intuitively write the predictive probability, (1.5), as

P[Xn+1 2 Ai+1 | X1 2 A1, . . . , Xn 2 An] = EQ
X(n)

[P(Ai)]

where QX(n)(B) := P(P 2 B | X(n)), for any B 2 PX, denotes the posterior probability of the RPM, P, given the
sample, X(n).

As we will see in Lecture 2 we will learn different ways of defining RPMs, P, and their distributions Q. Using the
analogous notation to description (1.7) we can write

Xi | P
iid⇠ P (1.8)

P ⇠ Q.

Marginalising the RPM in (1.8) we have that Xi ⇠ EQ[P] marginally, for any choice of de Finetti’s measure Q.
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