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ABSTRACT. This paper combines two ideas to construct autoregressive pro-
cesses of arbitrary order. The first idea is the construction of first order sta-
tionary processes described in Pitt et al. (2002) and the second idea is the
construction of higher order processes described in Raftery (1985). The result-
ing models provide appealing alternatives to model non-linear and non-Gaussian
times series.
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1. Introduction

In Pitt et al. (2002), a flexible way of constructing strictly stationary autoregressive type
AR(1) models with arbitrary marginal distributions was introduced. This article is concerned
with the generalisation to higher order models and also to models allowing more flexible
dependence structures.

The Pitt et al. (2002) constructions were based on a Gibbs sampler representation. Here
we briefly review the idea: Suppose the required marginal density for the model is set to be
fX(x). A conditional density fY |X(y | x) is introduced and a well-defined transition density
driving the AR(1)-type model {Xt} can be defined as

p(xt−1, x) =
∫

fX|Y (x | y) fY |X(y | xt−1) η1(dy) (1)

where

fX|Y (x | y) =
fY |X(y | x) fX(x)∫

fY |X(y | x) fX(x) η2(dx)
,

and η1 and η2 are certain reference measures, in practice the Lebesgue or counting measure.
It is easy to show that fX(·) constitutes an invariant density for the transition (1); that is

fX(x) =
∫

p(xt−1, x)fX(xt−1) η2(dxt−1). (2)

This implies that the constructed first order AR(1)-type model with transition (1) defines
a strictly stationary process with marginal density fX(·). The associated random variable
Y can be seen as a hidden or latent component in the model. Note that in order to avoid
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complications, the domain of the “ relevant parameter ” in fY |X(y | x) must coincide with the
support of the required stationary distribution.

Given the required stationary distribution, the dependence in the model is imposed by
the choice of fY |X(y | x). Although, in general, such imposition might take many forms, Pitt
et al. (2002) restrict this choice to those densities satisfying the linear dependence property
given by

E[Xt | Xt−1 = x] = ρ x + (1− ρ) µ, (3)

where 0 < ρ < 1 and µ = E(Xt). This gives an autocorrelation function (ACF) with
geometric decay, Corr(Xt, Xt−h) = ρh.

It is worth pointing out that among the AR-type models available in the literature, many
share the linear property mentioned above. A relatively recent review of these models can be
found in Grundwald et al. (2000).

When studying time series models, an important issue is the dependence structure, namely
the dynamics driving the process {Xt}. In the case of AR(1) models, such dependence is
determined by the law of {Xt | Xt−1}, or {Xt | Xt−1, Xt−2, . . . , Xt−p} in the case of p-
lagged models. In general, for non-linear and non-Gaussian models, complete specification
of the densities corresponding to such conditional distributions is difficult to find and, when
available, difficult to handle. From an application point of view, this difficulty has encouraged
the use of restricted approaches to studying dependence structures in AR-type models. In
particular, the modelling via Gaussian families has been popularised, and due to the second
moment characterization of this distribution, the autocorrelation function has become the
key measure of dependence.

One of the advantages of the approach undertaken by Pitt et al. (2002) is that, for the
AR(1) case, equation (1) can be manipulated to lead to tractable expressions. When such a
quantity has a closed form expression solving the underlying integral, then we can operate
directly with the transition density. Alternatively, if the integral in (1) can not be simplified,
the integral representation through the latent variable, Y , is useful and can be used, for
example, to construct a “ missing data ” likelihood function.

For the sake of illustration, let us borrow one of the examples from Pitt et al. (2002). Sup-
pose we want to construct an AR(1)-type model {Xt} with a gamma stationary distribution,
having density given by Ga(x; a, b) ∝ xa−1 e−bx I(x > 0), a, b > 0. Following the idea, we
need to find a conditional density fY |X(y | x). Set this choice to be the Poisson distribution
with density given by Po(y;xφ) ∝ (xφ)y/y! I{y = 0, 1, 2, . . .}. Here φ := b ρ/(1 − ρ) and
0 < ρ < 1, so the ACF is given by ρh. The well known conjugacy property between these
distributions leads to fX|Y (x | y) = Ga(x; y + a; b + φ).

In this case the linear expectation (3) is satisfied, since

E(Xt | Xt−1 = x) = E{E(Xt | Y ) | Xt−1 = x}

=
1− ρ

b
{a + E (Y | Xt−1 = x)}

= ρ x + (1− ρ)
a

b
(4)

leading to ACF(h) = ρh. Furthermore, following expression (1) with η1 taken to be the
counting measure, the one-step transition density of the constructed AR(1)-type model is
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given by

p(xt−1, xt) =
∞∑

y=0

Ga(xt; y + a, b + φ) Po(y;xt−1 φ)

=
exp

{
− b

1−ρ [xt + ρxt−1]
}

(1− ρ)ρ
a−1
2

√
xt

xt−1

a−1

Ia−1

(
2 b ρ1/2√xt xt−1

1− ρ

)
, (5)

where x, xt−1 > 0 and Iν(·) denotes the modified Bessel function of the first kind with index
ν. See Abramowitz and Stegun (1992). The availability of the transition density (5) allows us
to estimate the underlying parameters, a, b, ρ, using maximum likelihood estimation (MLE).

It is worth emphasizing that the specific family assumed for the conditional density
fY |X(y | x) might take different forms, leading to different forms of dependence while main-
taining the same marginal distribution. Although, in general, the approach used by Pitt
et al. (2002) can handle a wide variety of dependence forms, the structure of a given dataset
might easily depend on higher lagged observations. This clearly implies the need for models
with the ability to capture this feature.

2. Strictly stationary MTD models

In this section we use a technique introduced by Raftery (1985) to generalise the construction
of Pitt et al. (2002). Raftery considered one-step p-lagged transition densities constructed by
discrete mixtures of the type

f(x | xt−1, . . . , xt−p) =
p∑

k=1

wk pk(xt−k, x), (6)

for each t, where wk ≥ 0 and
∑p

k=1 wk = 1. In general, pk is allowed to change with the
lagged value. In this section we will concentrate on the case where the only dependence
is given through the lagged value, namely xt−k. Note that this approach presupposes the
knowledge of the first p values of the series, or one simply dismisses them for estimation
purposes. Raftery’s technique leads to Mixture of Transition Distribution (MTD) models.
MTD models have been used in many applied areas, we refer to Berchtold and Raftery (2002)
for a review on these models.

Although, in general, MTD models can be used with practically any transition densities,
their estimation typically relies in some stationarity assumptions based on the particular
choice of the parametric form assumed for the transitions p(·, ·). In Le et al. (1996) the
Gaussian case was studied and conditions for weak stationarity were presented. In fact, these
authors noted the difficulty in establishing conditions for strict stationarity. The typical
relation between stationarity conditions and the availability of feasible estimation methods
represent a limitation of the potential use of MTD models for applications in non-Gaussian
settings. Furthermore, when dealing with series not supported on the real line, it is not always
clear which form of transition density should be used for modelling purposes. Constructing
the underlying transitions via the approach proposed by Pitt et al. (2002) tackles both issues
of the strict stationarity and also provides an easy way of constructing parametric forms for
the transition distributions.

Before defining the models resulting from the merging of these two approaches, first let
us denote by X [t,i] := (Xt−1, . . . , Xt−i) the random lagged values down to lag i starting at
time t. Similarly, also define observed points x[t,i].
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Proposition 1. A MTD model {Xt}t∈N is strictly stationary with marginal density fX when
X1 ∼ fX and for all t ≥ 2

f
(
xt | x[t,tp]

)
=

tp−1∑
k=1

wk p(xt−k, xt) +

1−
tp−1∑
k=1

wk

 p(xt−tp , xt), (7)

where tp := (t− 1) ∧ p, i ∧ p := min{i, p},
∑p−1

k=1 wk ≤ 1 and the transition densities p(xk, ·)
are given by (1).

Proof. Without loss of generality, let us assume that Xt−1, . . . , Xt−p have marginal distribu-
tion with density given by fX(·). Hence, we can treat the conditional densities with at least
p lagged values. Defining wp := 1−

∑p−1
k=1 wk we have

f
(
xt | x[t,p]

)
=

p∑
k=1

wk p(xt−k, xt). (8)

Let E denote the support of fX(·) and Y the support of the conditional density required for
the transition density (1). In order to prove strict stationarity it is enough to verify∫

Ep

f(xt | x[t,p]) fX[t,p](x[t,p]) η2(dxt−1) · · · η2(dxt−p)

=
p∑

k=1

wk

∫
Y

∫
E

fX|Y (xt | yt) fY |X(yt | xt−k) fX(xt−k) η2(dxt−k) η1(dyt)

=
p∑

k=1

wk

∫
Y

fY |X(yt | xt) fX(xt) η2(dyt)

= fX(xt). (9)

The first equality comes from an application of Fubini’s Theorem and from the hypothesis
that Xt−1, . . . , Xt−p have marginal fX(·). The second equality comes from the reversibility
property underlying the construction.

The marginal densities corresponding to the blocks of dimension less than p can be verified
to be also equal to fX by using the same argument and applying equation (7). With this,
any finite dimensional distribution can be fully specified retaining the same structure under
time-shifts. Hence the result follows.

The restriction on the weight of the second summand in (7) is done to ensure that the
mixing proportions add to one even for those conditional densities with lagged values less
than p.

In the context of the generalisation to high order models, the main advantage of the
approach we are proposing, on combining the approaches of Pitt et al. (2002) and Raftery
(1985), are the strict stationarity of the model and the integral representation of the transition
mechanism driving the model. Proposition 1 uses the strict stationarity as a constructive
feature rather than a property depending of some parameter values. Defining the transition
distributions via the approach by Pitt et al. (2002) provides an appealing way to model non-
linear and non-Gaussian dependence while retaining stationarity. Note that Proposition 1
also covers those conditional densities depending on lagged values less than p, providing a
full characterisation of all finite dimensional distributions of {Xt}t∈N.

It is worth mentioning that the general approach of MTD models introduced by Raftery
(1985) is not limited to stationary models, since it does not impose any condition on the
marginal behavior, but rather only on the transition densities. In our approach, the transition
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density required for the construction of the MTD model is built in a way that ensures the
marginal distribution fX(·) remains invariant.

In general, the approach introduced by Raftery (1985) is not always easy to handle, as
shown in Le et al. (1996), where they confine themselves to Gaussian distributions. The main
issue for non-Gaussian distributions in the general MTD framework is stationarity, which is
not easily attained, even in a weak sense. This typically leads to estimation procedures which
are complicated.

2.1. Correalation structure and higher moment properties

Constructing the transition densities through the approach described in Proposition 1, leads
us to the following latent representation;

f(x | x[t,p]) =
p∑

k=1

wk

∫
fX|Y (x | yt) fY |X(yt | xt−k) η1(dyt)

=
∫

fX|Y (x | yt) f(yt | x[t,p]) η1(dyt), (10)

where

f(yt | x[t,p]) =
p∑

k=1

wk fY |X(yt | xt−k). (11)

Therefore, the latent structure enters as a typical finite mixture model. See McLachlan and
Peel (2000).

Such a representation allows us to study all dependency properties of the stationary MTD
model, even in cases where the transition densities are not known explicitly. This allows us
to consider models with complex dependence structures.

As previously mentioned, a feature of the models in Pitt et al. (2002) is the linear expec-
tation property (3). In the construction at issue, this property also extends to the p-order
case. We have

E(Xt | X [t,p]) =
p∑

k=1

wk {ρ Xt−k + (1− ρ) µ} = ρ

(
p∑

k=1

wk Xt−k

)
+ (1− ρ) µ. (12)

Some other quantities of interest can be obtained while keeping this linear property. For
example, if p = 2, we have

f(xt | xt−1, xt−2) = w p(xt−1, xt) + (1− w) p(xt−2, xt)

and
E(Xt | Xt−1, Xt−2) = ρ {w xt−1 + (1− w) xt−2}+ (1− ρ) µ.

Let us use the notation Ex(·) = E(· | X1 = x). Then the lagged predictive moments are
given by

Ex(X2) = ρ x + (1− ρ) µ

Ex(X3) = Ex[E(X3 | X2, X1)] = Ex [ρ (w X2 + (1− w) X1) + (1− ρ) µ]
= ρ w Ex(X2) + ρ (1− w) x + (1− ρ) µ

Ex(X4) = Ex[E(X4 | X3, X2)] = ρ w Ex(X3) + ρ (1− w) Ex(X2) + (1− ρ) µ

...
Ex(Xh) = ρ w Ex(Xh−1) + ρ (1− w) Ex(Xh−2) + (1− ρ) µ, (13)
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where µ = E(X), assuming it exists, denotes the mean of the given stationary distribution.
If we further assume that µ(2) := E(X2) also exists, then we can compute the following
difference equation for the autocovariance,

γ(h) = E(Xh+1X1)− µ2 = E[X1 E(Xh+1 | X1)]− µ2.

= ρ w E(X1Xh) + ρ (1− w) E(X1Xh−1) + (1− ρ) µ2 − µ2

= ρ w γ(h− 1) + ρ (1− w) γ(h− 2). (14)

In terms of the autocorrelation function we have,

r(h) =
γ(h)

µ(2) − µ2
= ρ [w r(h− 1) + (1− w) r(h− 2)] , h ≥ 2, (15)

with initial conditions

r(0) = 1 and r(1) = ρ. (16)

The general solution to this difference equation is given by

r(h) = B1 zh
1 + B2 zh

2 , (17)

where z1, z2 are the solutions to the quadratic equation given by z2 − ρ w z − ρ (1− w) = 0,
and B1, B2 are determined with the initial conditions. Therefore, the ACF can be determined
through

r(h) =
1

2h+1

{[
1 +

2 ρ− ρ w

A

]
[ρ w + A]h +

[
1− 2 ρ− ρ w

A

]
[ρ w −A]h

}
, (18)

where A =
√

ρ2 w2 + 4 ρ− 4 ρ w.
In general, p-lagged stationary MTD models with linear property (12) satisfy the p-order

difference equation given by

r(h) = ρ

p∑
k=1

wk r(h− k), h ≥ p.

Notice that, for the above example, the ACF does not depend on the choice of stationary
distribution. Typically, tools for analysing dependency in time series models are based on sec-
ond order moments. However, higher moments can be crucial in the analysis of dependence,
this is the case of the well known ARCH model (Engle (1982)).

As we mentioned before, Grundwald et al. (2000) noted that most non-Gaussian station-
ary models available in the literature are limited to the simple linear dependence (3). The
representation (1) for the transition density in the construction by Pitt et al. (2002) not only
provides us with means of constructing models with more complex dependence structures
but also to study higher moments. For example, in the gamma-Poisson AR(1) model (5), of
Section 1, we have that for s, l ≥ 1

E[Xs
t X l

t−1] = (b + φ)−s
∞∑

y=0

Γ(y + s + a)
Γ(y + a)

φy

y!
ba

(φ + b)y+l+a

Γ(y + l + a)
Γ(a)

=
(1− ρ)a+s+l Γ(s + a) Γ(l + a)

b s+l Γ(a)2 2F1(s + a, l + a; a; ρ), (19)
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where 2F1([·, ·]; · ; · ) denotes Gauss’s hypergeometric function. See Abramowitz and Stegun
(1992). Using the result (19), it can be seen that, in particular, the 1-lag ACF corresponding
to the squared process {X2

t } is given by

Corr(X2
t , X2

t−1) =
(ρ + 2 + 2a)ρ

2a + 3
. (20)

For this cross moment, the dependence also includes the parameters contained in the station-
ary distribution; a difference from the row ACF.

From a simulation perspective, we have the following mechanism for moving to Xt from
{Xt−1, . . . , Xt−p}. We take

Xδt = Xt−k with probability wk, k = 1, . . . , p

then take
Yt ∼ fY |X(yt|xδt)

and
Xt ∼ fX|Y (xt|yt).

A complete data likelihood based on the complete data set {Xt, Yt, δt} is available for inference
purposes.

3. Dependence structure via random measures

We have seen in Section 1 that the approach of Pitt et al. (2002) requires the specification of
a parametric distribution with density fY |X(y | x). Essentially, any parametric conditional
distribution is allowed. For instance, in the gamma-Poisson example presented in the intro-
duction we could have chosen fY |X(y | x) = Ga(y;x, 1) instead of Po(y;xφ), which also leads
to a stationary model with marginal distributions Ga(a, b). This distribution determines the
dependence structure driving the model, and therefore plays an important role in the under-
lying construction. Specific choices can be of interest when some intuition about the latent
variable is available. However, in many situations this is not the case.

In order to overcome this issue, Mena and Walker (2005) resorted to randomize the
choice of such a distribution by using ideas from Bayesian nonparametric methods. The
idea is simple, if we look closer at the construction of Pitt et al. (2002), the distribution
fY |X(y | x) can be seen as the posterior distribution corresponding to a prior distribution on
the latent variable Y , and hence p(xt−1, xt) becomes the posterior predictive distribution. For
a nonparametric assumption about Y , it seems reasonable to assume that such a component
is itself a random distribution function.

An example, which appears in Pitt et al. (2002), can be obtained using the predictive
distribution of the Dirichlet process; see Ferguson (1973). Specifically, instead of considering
fY |X(y | x) given in a parametric form, let us consider the posterior distribution, based on
one-observation, corresponding to the Dirichlet process,

F | X ∼ D(cG + δX),

where c > 0, D(µ) denotes the Dirichlet process with driving measure µ, G := ED [F ] denotes
the distribution function of the required stationary distribution and δx is the Dirac measure.
The predictive distribution function corresponding to such a process is given by

P [Xt ≤ xt | Xt−1 = xt−1] =
cG(xt) + δxt−1((−∞, xt])

c + 1
. (21)
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In this nonparametric setting, F is now equivalent to the latent component Y . A high
order analog of this model can be constructed using the MTD idea described in the previous
section. The idea involves taking

Xt|Ft ∼ Ft

with

Ft | Xt−1, . . . , Xt−p ∼
p∑

k=1

wk D
(
cG + δXt−k

)
. (22)

Following Proposition 1, it is easy to show that {Xt} is stationary with marginal distribution
function G. That is,

E


t−1∑

k=t−p

wk
cG(x) + 1(Xk ≤ x)

c + 1


is easily seen to be G(x). Based on this result we can actually see that

Xt|Xt−1, . . . , Xt−p


∼ G with probability c/(c + 1)

= Xt−k with probability wk/(c + 1).

It is worth mentioning that the stationary MTD via Dirichlet predictive distributions, re-
sembles the DAR models, first introduced by Jacobs and Lewis (1978) under a different
construction.

If one-data based predictive distributions, resulting from a non-parametric Bayesian
scheme, take a tractable form, the underlying construction is also valid using other random
measures. For example, we can use all random distributions resulting from normalisation of
increasing additive processes, see Regazzini et al. (2003), Lijoi et al. (2005a,b). In this spirit
normalised log-Gaussian processes were used, in Mena and Walker (2005) to build AR(1)-type
models.

4. Estimation

The approach we are proposing uses Bayes theorem to construct the predictive distribution;
it is then used as the transition kernel in the construction of MTD models. Rather than
being used as an inference procedure, Bayes theorem is used in the construction of the
model. In order to emphasise this point, we have chosen to estimate the model using non-
Bayesian procedures. However, adopting a Bayesian approach could be done through a simple
modification of the analysis presented in Diebolt and Robert (1994).

In Le et al. (1996), estimation of parameters and weights is done by the expectation maximisation
(EM) algorithm. Their method consists in conditioning on a latent variable Zt, taking values
1, . . . , p, with probabilities w1, . . . , wp. Typically, it is assumed that

Pr(Zt = zt) = w1
z1tw2

z2t · · ·wp
zpt .

Hence, given Zt = (0, . . . , 1, . . . , 0), that is one in the k-th entry, density (8) reduces to
p(xt−k, xt), for k = 1, . . . , p. For a review of this method we refer to McLachlan and Peel
(2000). Here we adapt it to our model. In practice, it is convenient to work with a p-
dimensional latent vector, Zkt defined to be one or zero according to whether the lagged
value is k or not.
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Given a sample x = (x1, . . . , xn), n > p, the logarithm of the augmented data likelihood
can easily seen to be equal to

log Lx,z(θ) =
p∑

k=1

n∑
t=1

zkt[log wk + log p(xt−k, xt; θ)], (23)

where θ denotes all the parameters in the model. Note that a difference from Le et al. (1996)
is that we are considering the stationary part, the distribution of the first p values, in the
likelihood.

Hence, given an initial, or current, value of parameters θ(i) and w
(i)
k for k = 1, . . . , p, the

E-Step involves takng the expectation of (23) with respect to the conditional distribution of
Z | X, which reduces to

τk

(
xt, θ

(i)
)

:= E[Zkt | x] =
w

(i)
k p

(
xt−k, xt; θ(i)

)
f
(
xt | x[t,p]; θ(i)

) .

The M-Step involves maximising

θ(i+1) = max
θ

Q(θ | θ(i)), (24)

where

Q(θ | θ(i)) =
p∑

k=1

n∑
t=1

τk

(
xt, θ

(i)
)
[log wk + log p(xt−k, xt; θ)]. (25)

The weights are updated via

w
(i+1)
k =

n∑
t=1

τk

(
xt, θ

(i)
)

n− k
, for k = 1, . . . , p. (26)

So far we have not used the fact that the one-step transition component can be also be
decomposed through a latent variable Y . As we mentioned before, the parametric setting of
Section 2 provides us with representation (1) for the transition p(xt−k, xt). However, such an
integral might not lead to a tractable expression or may even not be available explicitly. In
such cases, it can be of interest to consider the complete data likelihood, also including the
latent variables Y = (Y2, . . . , Yn). This, leads to consider the complete data log-likelihood
given by

log Lx,z,y(θ)=log fX(x1; θ)+
p∑

k=1

n∑
t=1

zkt{log wk + log[fX|Y (xt | yt; θ) fY |X(yt | xt−k; θ)]}. (27)

Hence, the EM algorithm will involve taking the expectation of (27) with respect to Z, Y | X.
If we consider the decomposition of such a distribution as

Law{Y, Z | X} = Law{Y | X, Z}Law{Z | X}

then the only additional requirement is to consider the component-wise distribution

f(ykt | xt, xt−k) ∝ fX|Y (xt | ykt) fY |X(yt | xt−k). (28)

9



1 6 11 16 21 26 31 36 41 46 51 56 61 66 71

10

20

30

Snatchings 

0 3 6 9 12

−0.25

0.00

0.25

0.50

0.75 ACF 
PACF 

Figure 1: Number of Hyde Park purse snatchings in Chicago within every 28 day periods; Jan’69 -
Sep ’73. The upper plot shows the data series and the bottom one the autocorrelation and partial
autocorrelation function.

5. Illustration

For our illustration we have selected a real data set consisting of the number of Hyde Park
purse snatchings in Chicago within every 28 day periods; Jan’69 - Sep ’73. The data source
is McCleary and Hay (1980).

From the nature of the data, shown in Figure 1, we can infer that the support is the
set of non-negative reals. Hence, a reasonable choice for the stationary distribution could be
the gamma distribution with mean a/b. The data also exhibit high autocorrelation, at least
back to lag five. It also shows certain recurrences, therefore justifying the use of a stationary
model. With this observations it is reasonable to assume the Stationary MTD model with
transition probabilities given by (5).

We apply the EM algorithm described in Section 4. The maximisation step was performed
through the Broyden-Fletcher-Goldfarb-Shanno (BFGS) optimization algorithm. See Press
et al. (1992) for more on this algorithm. Table 5 presents the results. From these results we
can infer that the lagged values Xt−1, Xt−2, Xt−3 and Xt−7 are significant, agreeing with the
results observed in the ACF in Figure 1. The histogram corresponding the the snatchings
data together with the fitted stationary distribution are shown in Figure 2.

Notice that, for this data set, it is also possible to fit a classical AR(p) model by preliminary
transformations to (second order) stationarity, e.g. by removing mean or differentiating.
However, doing this would not consider any of the higher moment properties underlying the
MTD model.
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Iter. a b ρ w1 w2 w3 w4 w5 w6 w7

20 4.45 0.34 0.674 0.387 0.294 0.0733 0.0452 0.00717 0.00945 0.184
40 4.48 0.343 0.659 0.401 0.345 0.0444 0.0167 0.000765 0.00114 0.191
60 4.48 0.344 0.654 0.406 0.363 0.0301 0.00681 8.34E-05 0.000141 0.193
80 4.48 0.344 0.651 0.41 0.371 0.0218 0.00289 9.11E-06 1.78E-05 0.194

100 4.48 0.344 0.65 0.412 0.375 0.0165 0.00125 9.98E-07 2.26E-06 0.195
120 4.48 0.344 0.65 0.414 0.378 0.0128 0.000543 1.09E-07 2.88E-07 0.195
140 4.48 0.344 0.649 0.415 0.379 0.0102 0.000237 1.20E-08 3.67E-08 0.195
160 4.48 0.344 0.649 0.416 0.38 0.00819 0.000103 1.32E-09 4.71E-09 0.196
180 4.48 0.344 0.649 0.416 0.381 0.00667 4.52E-05 1.45E-10 6.04E-10 0.196
200 4.48 0.344 0.648 0.417 0.382 0.00548 1.98E-05 1.59E-11 7.76E-11 0.196
300 4.48 0.344 0.648 0.418 0.383 0.00222 3.16E-07 2.56E-16 2.76E-15 0.196
400 4.49 0.344 0.648 0.419 0.384 0.000961 5.04E-09 4.16E-21 9.89E-20 0.196
500 4.49 0.344 0.648 0.419 0.384 0.000428 8.05E-11 6.75E-26 3.56E-24 0.197

Table 1: Results for the EM estimation algorithm for a stationary MTD-AR(2) model applied
to the snatchings data set.
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Figure 2: Fitted stationary distribution for the number of Hyde Park purse snatchings in Chicago.
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