
STATIONARY AUTOREGRESSIVE MODELS VIA A BAYESIAN
NONPARAMETRIC APPROACH

By Ramsés H. Mena and Stephen G. Walker
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Abstract. An approach to constructing strictly stationary AR(1)-type models with
arbitrary stationary distributions and a flexible dependence structure is introduced.
Bayesian nonparametric predictive density functions, based on single observations, are
used to construct the one-step ahead predictive density. This is a natural and highly
flexible way to model a one-step predictive/transition density.
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1. INTRODUCTION

Constructing strictly stationary autoregressive type (AR-type) models with
arbitrary stationary distributions has been a focus of research for the past three
decades. Typically, such models are useful when marginal inspection from the
data is feasible. Early accounts of this type of construction, outside the Gaussian
framework, can be found in Lawrance and Lewis (1977, 1980), Jacobs and Lewis
(1977), Gaver and Lewis (1980) and Lawrance (1982), where positive real-valued
AR-type models with marginal distributions falling in the gamma family were
proposed. The construction proposed by these authors rely on the notion of a self-
decomposable (SD) random variables.

A random variable X that can be decomposed as X ¼d qX þ W, where ¼d

denotes equal in distribution, for all 0 < q < 1 and (innovation) variable W,
independent of X, is known to be self-decomposable. The SD random variables
include many well-known distributions such as the gamma, log-normal and
inverse Gaussian families.

It follows that Xt ¼ qXt)1 þ Wt, where Wt are independent and identically
distributed copies of W, gives a stationary sequence Xt, with the stationary
distribution being SD. See Mena and Walker (2004) for a recent study of the
innovation distribution, which is generally of a complicated form.

Most of the contributions have focused on constructing integer-valued models.
See McKenzie (1986, 1988), Al-Osh and Alzaid (1987), Alzaid and Al-Osh (1990),
Du and Li (1991) and Al-Osh and Aly (1992), who used the thinning operator to
construct AR-type models with Poisson, negative binomial and geometric
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stationary distributions. The thinning operator, defined in its simplest form by
q Æ X � Binomial(X, q), is useful to construct discrete versions of SD random
variables (see Steutel and van Harn, 1979). For example, the thinning operator
allows the construction of integer-valued AR-type (INAR) models, Xt ¼
q Æ Xt)1 þ Wt. See also Jacobs and Lewis (1978a, 1978b, 1978c) for an
alternative approach to constructing integer-valued models.

A unified approach to constructing stationary AR-type models that
encompasses many of the approaches has been highlighted by Joe (1996) and
J�rgensen and Song (1998). In their approach stationary models of the type Xt ¼
At(Xt)1) þ Wt, where At(Æ) denotes a random operator, allow the construction of
models with stationary distributions belonging to the infinitely divisible
convolution-closed exponential family. This can itself be seen as a particular
case of a more recent approach studied by Pitt et al. (2002).

The approach of Pitt et al. (2002) goes as follows: Suppose the required marginal
density for the process is given by p(x). A conditional distribution is introduced
p(yjx) and the transition density driving the AR(1)-type model fXtg is obtained as

pðxjxt�1Þ ¼
Z

pðxjyÞpðyjxt�1Þg1ðdyÞ ð1Þ

with

pðxjyÞ ¼ pðyjxÞpðxÞR
pðyjxÞpðxÞg2ðdxÞ

;

where g1 and g2 are reference measures, such as the Lebesgue or counting
measures. It is easy to show that p(Æ) constitutes an invariant density for the
transition (1); that is

pðxÞ ¼
Z

pðxjxt�1Þpðxt�1Þg2ðdxt�1Þ: ð2Þ

This implies that the resulting AR(1)-type model with transition (1) defines a
stationary process with marginal distribution whose density is given by p(Æ). It is
worth mentioning that this approach resembles the construction of a reversible
Markov chain in the MCMC literature; in particular, with that of the Gibbs
sampler method (see Smith and Roberts, 1993). Therefore, AR(1)-type models
constructed using this approach will retain the reversibility property (see Robert
and Casella, 2002).

In the construction of Pitt et al. (2002), although the stationary density is fixed,
the transition density has a number of choices based on the selection of p(yjx). In
time series analysis it is this transition which is estimated and so a parametric
form for p(yjx) would lead to a parametric approach. In this paper we propose a
nonparametric approach for modelling the transition density, while retaining the
known stationary density.

The idea is based on a closer inspection of (1). Note that the transition density
has the interpretation of
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pðxjxt�1Þ ¼ EfpðxjyÞjxt�1g;

where the expectation is with respect to p(yjxt)1) which itself can be seen as a
Bayes posterior distribution with likelihood p(xt)1jy) and prior p(y). If we now
consider y � f to be a density function with prior P(df) then we can see the
transition density as

pðxjxt�1Þ ¼
Z

f ðxÞPðdf jxt�1Þ;

where P(dfjxt)1) is the Bayes posterior for the density f given observation xt)1.
Also, p(xjy) � f(x) and p(yjxt)1) � P(dfjxt)1). In other words, the transition
density is the Bayesian predictive density based on the prior P(df) and a single
observation. This is therefore connected to the area of Bayesian nonparametric
methods.

Describing the layout of the paper; in Section 2 we present detailed background
to the relevant concepts of Bayesian nonparametrics and define the general form
for the model. Section 3 details the specific Bayesian nonparametric model
discussed in the paper. Section 4 presents a numerical illustration of our approach
and finally Section 6 contains a brief discussion and possible future work.

2. BAYESIAN NONPARAMETRIC CONSTRUCTION

We will be using a Bayesian nonparametric model to construct the transition
density. Hence it is prudent here to describe such nonparametric models. The
basic idea is a probability measure on spaces of density functions. In practice, the
prior distributions are based on stochastic processes, such as Gaussian processes
or Lévy processes (independent increment processes). The probability distribution
governing the stochastic process acts as the prior distribution. See Walker et al.
(1999) for a recent review.

For example, the Dirichlet process is based on a Lévy process, specifically, an
independent increment gamma process. Let this be denoted by Z(t), for t � 0. If
limt!1Z(t) < þ1 with probability one then

F ðtÞ ¼ ZðtÞ=Zð1Þ

behaves as a distribution function. The probability governing this process is the
prior distribution. The posterior distribution is also a Dirichlet process (Ferguson,
1973). In the case of the Dirichlet process there is no admission of density
functions. We are interested in priors which admit densities and so the actual
prior process we will use is based on a Gaussian process, suitably normalized,
which provides a process behaving almost surely as a density function. A detailed
description of this process and the random density functions generated are given
in Section 3.
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So the prior will be denoted by P(df), or equivalently P(dF) if preference is on
the distribution rather than density function, and the posterior, given an
observation x from f, is given by

Pðdf jxÞ ¼ f ðxÞPðdf ÞR
f ðxÞPðdf Þ :

The predictive density based on the single observation x is then given by

pðx0jxÞ ¼ Eff ðx0Þjxg ¼
Z

f ðx0ÞPðdf jxÞ:

This forms the basis of the transition density.
To illustrate our idea we will use a simple random distribution model with

marginal distribution Q. Consider the following joint distribution:

P ðX � x; F 2 AÞ ¼ EPfF ðxÞIðF 2 AÞg ¼
Z
A
F ðxÞPðdF Þ

for any measureable set of distributions A. Integrating out the random
distribution component, we have Q(Æ) given by

QðxÞ ¼ EPfF ðxÞg ¼
Z

F ðxÞPðdF Þ: ð3Þ

In the Bayesian nonparametric literature, Q is known as the centering or
expected distribution associated with the prior P. In our context, the distribution
Q(Æ) will act as the required stationary distribution for the AR(1)-type model.

The posterior of F given X ¼ x is characterized by

PðF 2 AjX ¼ xÞ: ð4Þ

The conditional distribution (4) provides us with a way to construct the
following one-step transition probability:

Pðxt�1; xÞ ¼ PðXt � xjXt�1 ¼ xt�1Þ ¼ EfF ðxÞjXt�1 ¼ xt�1g; ð5Þ

where the expectation is taken with respect to the conditional distribution (4).
The construction of the above one-step transition probability is equivalent to

finding predictive densities, based on one observation, within the Bayesian
nonparametric framework. The probability measure P can be seen as the
nonparametric prior. It is easy to check that if Xt)1 � Q and LawfXtjXt)1 ¼
xg ¼ EfFjXt)1 ¼ xg then marginally Xt � Q. Note that

PXtðxÞ ¼
Z

Pðxt�1; xÞQðdxt�1Þ ¼
Z Z

F ðxÞdF ðxt�1ÞPðdF Þ

¼
Z

F ðxÞ
Z

dF ðxt�1Þ
� �

PðdF Þ ¼ QðxÞ:

In this case, the constructed AR(1)-type model is also reversible since the
balance condition

792 R. H. MENA AND S. G. WALKER

� Blackwell Publishing Ltd 2005



Pðxt�1; xÞQðxt�1Þ ¼
Z

F ðxÞ F ðxt�1ÞPðdF Þ ¼ Pðx; xt�1ÞQðxÞ;

is satisfied for any space–time points x and xt)1.
The construction at issue, as an extension of the parametric setting introduced

by Pitt et al. (2002) was also motivated in their paper. They found that the first
order discrete autoregressive, DAR(1), model of Jacobs and Lewis (1978c) can be
seen as an AR(1)-type process constructed in this way, when the probability
measureP is set to be the Dirichlet process. More precisely, if we denote by D(cQ)
a Dirichlet process driven by the measure c Q(Æ), where c > 0, then a random
distribution chosen by F � D(cQ) satisfies

EfF ðxÞg ¼ QðxÞ

for any x 2 R (see Ferguson, 1973). The parameter c > 0 is commonly associated
to the variability of the random distributions F about Q.

In this case, the well-known conjugacy property of the Dirichlet process leads
to

F jX ¼ x � DðcQþ dxÞ;

where dx denotes the point mass at x. See Theorem 1 in Ferguson (1973). With
these assumptions, we can construct the following transition distribution driving
the process fXtg1t¼ 1

Pðxt�1; xÞ ¼ EfF ðxÞjXt�1 ¼ xt�1g

¼ c
cþ 1

QðxÞ þ 1

cþ 1
dxt�1

ðð�1; x�Þ; ð6Þ

which remains invariant with respect to Q. Model (6) is known as the DAR(1)
model. Take c ¼ q)1 ) 1 to obtain the notation of Jacobs and Lewis (1978c).

This model has a tractable dependence structure. It also inherits the discreteness
associated with the Dirichlet process, a problem that rules it out as a model in
most applications of time series analysis. Therefore, an alternative is to focus on
choices of random distributions that lead to models that put probability one on
the set of all absolutely continuous distributions. In other words, we look for
models where

PðXt ¼ xjXt�1 ¼ xÞ ¼ 0

for all x 2 R. In what follows we study one choice of prior P with such constraint
and with the property of having a more flexible dependence structure.

3. AR(1) MODELS BASED ON GENERALIZED LOG-GAUSSIAN PROCESSES

We use a method based on Gaussian processes studied by Lenk (1988) based on
ideas of Leonard (1978) and Thorburn (1986). In order to introduce this method
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first let us assume that we want to construct a probability measure on density
functions that have support on the set E, a subset of the real line. In other words,
a density f will be modelled by a stochastic process f ¼ ff(x); x 2 Eg. The �sample
paths� or �trajectories� of such a process are densities.

Working in the framework described above, we can write the transition density
corresponding to the transition distribution (5) and stationary density q, as
follows

pðxt�1; xtÞ ¼
1

qðxt�1Þ

Z
f ðxtÞ f ðxt�1ÞPðdf Þ; ð7Þ

where q(x) ¼
R
f(x)P(df).

The logistic normal distribution described in Lenk (1988) is constructed as
follows: Let Z be a Gaussian process with mean function l and covariance
function r, both being continuous so a continuous separable version with
integrable sample paths of Z is available. Consider the following logistic
transform of Gaussian processes

f ðxÞ ¼ W ðxÞR
E W ðsÞdkðsÞ ; ð8Þ

where k is a r-finite measure on E andW(x) ¼ expfZ(x)g. The law, K, for the log-
normal process W will be denoted by LNE(l, r). Provided the existence of such
process, f has sample paths that are densities, and its support contains the
densities on E with respect to k.

As we saw in Section 2, the transition probability is given in terms of the
moments of the random density. Following Lenk (1988), let us notice that the
joint moments of W are given by

MðxÞ ¼ E
YK
k¼1

W ðxkÞ
" #

¼ exp
XK
k¼1

lðxkÞ þ
rðxk; xkÞ

2

 !
þ
XK
i<j

rðxi; xjÞ
( )

; ð9Þ

where x 2 EK. The random density f uses the path-integral of W, for which the
positive moments are given by

CðK; lÞ ¼ E

Z
E
W dk

� �K
" #

¼
Z
EK

E
YK
k¼1

W ðskÞ
" #

dkðsÞ

¼
Z
EK

exp
XK
i<j

rðsi; sjÞ
( )YK

k¼1

W0ðskÞdkðsÞ; ð10Þ
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where dk(s) ¼ dk(s1)dk(s2)� � �dk(sK) and W0(s) ¼ E[W(s)] ¼ expfl(s) þ r(s,s)/
2g.

It can be proved that the use of process (8) as nonparametric prior leads to
nonconjugate posteriors (4). In order to circumvent this issue Lenk (1988)
considered a generalization of the random density (8) characterized by the
following distribution:

KnðAÞ ¼
R
A

R
E W ðsÞdkðsÞ

� �n
dKðW Þ

Cðn; lÞ ; ð11Þ

where n ¼ 1,2,. . . and K � W � LNE(l, r). The generalized distribution (11) is
indicated by LNE(l, r, n).

The logistic normal process, denoted by LNSE(l, r, n), is defined as the random
density on Fd defined by the logistic transformation (8) with W � LNE(l, r, n).

Proposition 1. Let f � LNSE(l, r, n), then

E
YK
i¼1

f ðxiÞ
" #

¼ MðxÞCðn� K; l�Þ
Cðn; lÞ ;

where

l�ðsÞ ¼ lðsÞ þ
XK
i¼1

rðs; xiÞ;

M(Æ) is given by (9) and C(i, l) is the ith moment, defined by (10).

Proof. For a proof of this proposition we refer to Corollary 3 in Lenk
(1988). u

Hence, modelling the random densities as f � LNSE(l, r, n) the transition
density (7) is given by

pðxt�1; xtÞ ¼
E f ðxtÞf ðxt�1Þ½ �

qðxt�1Þ

¼ 1

qðxt�1Þ
Mððxt; xt�1Þ0Þ

Cðn� 2; l	Þ
Cðn; lÞ ; ð12Þ

where q(x) ¼ E[f(x)] and l	(s) ¼ l(s) þ r(s, xt) þ r(s, xt)1). Using Proposition
(1), the stationary density q can be represented as follows

qðxÞ ¼ E½f ðxÞ� ¼ exp lðxÞ þ rðx; xÞ=2f gCðn� 1; lxÞ
Cðn; lÞ ;

where lx(s) ¼ l(s) þ r(s, x). We thus have a very general method for constructing
a stationary AR(1)-type models with stationary density q and transition density
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given by (12). The functions l and r present in (12) and q will allow us to model
both marginal and dependence structure in a highly flexible way.

3.1. Case n ¼ 1

As pointed out in Lenk (1988), the dependence structure of the process fXtg1t¼1 is
driven by the covariance function r chosen for the required Gaussian process. If
r ! 0 then the model approaches independence, meaning that not lag-
dependence is captured.

Hence choosing a model translates into choosing n, l and r adequately. In
order to easily represent the stationary distribution let us assume that n ¼ 1, so
that the random density is modeled by f � LNSE(l, r, 1). Under this assumption
we have

qðxÞ / exp lðxÞ þ rðx; xÞ=2f g: ð13Þ

Therefore, if we want to construct a AR(1)-type model with stationary density
being q, we take the mean function in the required Gaussian process to be equal to

lðxÞ ¼ ln qðxÞ � rðx; xÞ
2

: ð14Þ

We are left with r modelling the dependence structure.

Proposition 2. Assume that q and r are given and that f � LNSX(l, r, 1), with l
given by (14), then

pðxt�1; xtÞ / qðxtÞ expfrðxt; xt�1ÞgCð�1; l	Þ: ð15Þ

Proof. The proof is given by direct substitution of (14) in (12) withM given by
expression (9). u

Hence, for an arbitrary choice of q we can construct an AR(1)-type model with
transition (15).

The complicated part of the transition (15) lies in the negative moment
C()1,l	). Such moments are not very tractable. In Lenk (1988) a Monte Carlo
approximation scheme was proposed to compute such negative moments, which
results in the following estimator,

Cð�1; l�Þ / exp �rðxt;þÞf g;

where

rðx;þÞ ¼
Z
E
rðx; sÞdkðsÞ=kðEÞ:
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Hence, the transition density (15) can be approximated by

pðxt�1; xtÞ / qðxtÞ expfrðxt; xt�1Þ � rðxt;þÞg: ð16Þ

For illustration purposes we consider a particular choice of covariance
function, through which the dependence, in the AR(1)-type model, will be
included. Natural choices of valid covariance functions are given by those
corresponding to stationary Gaussian process, namely r(x, y) ¼ r�(jx ) yj). A
general form within this class is the Matérn covariance function given by

r�ðsÞ ¼ a
CðmÞ2m�1

2
ffiffiffi
m

p
s

j

� �m

Km
2
ffiffiffi
m

p
s

j

� �
; a; j; m > 0; ð17Þ

where s ¼ jx ) yj and Km denotes the modified Bessel function of the second kind
of order m (see Abramowitz and Stegun, 1992, Sec. 9.6). This covariance function
leads to Gaussian processes with (m ) 1)-times diferenciable paths. Therefore, m
forms a smoothing parameter, for the paths of the Gaussian process Z, required
in the construction of the random density. The parameter j controls the
dependency strength and a is a scaling parameter. For more on covariance
functions we refer to Abrahamsen (1997).

Figure 1 shows some sample paths and densities of stationary AR(1)-type
models driven by transition (16) with normal and Student-t stationary
distributions. The stationary distributions were also plotted (dotted lines).
From the density plots we can observe some skewness and kurtosis, this
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Figure 1. Data simulated from stationary AR(1)-type models using the approach described in Section
3.1. The Matérn covariance function with parameters a ¼ j ¼ m ¼ 1 was used.
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suggests that the constructed models are able to represent some of these features.
The simulations were done using the inverse CDF method. The required
normalization was done with numerical integration.

The Matérn covariance function is quite general among stationary covariances.
However, the resulting dependence in the AR(1)-type model may be limited to
these stationary behaviour. In Section 4 we give an example with a more general
covariance function, leading to a wide flexibility in the dependence structure.

3.2. Case n ¼ 2

The difficulty of working with negative moments leads us to consider the case
when n ¼ 2. From the transition density (12) is clear that any choice of n � 2
leads to a transition that does not depend on the negative moments. In
particular for the case n ¼ 2, we have the following simple form for the
transition density,

Proposition 3. Let us assume that q and r are given and that f � LNSX(l, r, 2)
then

pðxt�1; xtÞ / qðxtÞ expfrðxt; xt�1Þg: ð18Þ

Proof. The proof follows the same argument as the one given for Proposition
2. u

In this case the form of the marginal density is not straightforward to write down
(in terms of l and r) because it will involve the term C(1, lx). However, this is
more than compensated by the simple form of the transition density.

4. A STATIONARY AR(1) MODEL WITH BETA MARGINALS

As mentioned before, Pitt et al. (2002) introduced a technique to construct
stationary AR(1) models with a given stationary distribution. For the sake of
illustration, let us consider the case, where the stationary distribution belongs to
the beta family with density function denoted by q(x) ¼ Beta(x; a, b). Following
the approach in Pitt et al. (2002) a way to construct an AR(1)-type model with
such stationary distribution can be done by imposing the parametric family
fYjX(yjx) ¼ Binomial(y; r, x). Hence, the other component required to get the
transition density (1) is given by fXjY(xjy) ¼ Beta(x; a þ y, b þ r ) y). It can be
easily seen that, the transition probability of this model has linear expectation
given by E(XtjXt)1) ¼ qXt)1 þ (1 ) q)l, where l ¼ E(X) ¼ a/(a þ b) and q ¼ r/
(r þ a þ b), the later also denoting the one-lag autocorrelation in the model.
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The dependence structure in the model is determined by the form assumed for
fYjX. However, changing such specification with another suitable family of
distributions might lead to a completely different model with the same marginal
distributions. In other words, given that the phenomenon under study has a beta
distribution as the marginal, there is still a wide choice for the dependence
structure. Hence our model is useful in such contexts. As an example we will try to
capture the dependence in two simulated data sets.

Let us consider two data sets of size 200, simulated from the beta stationary
AR(1)-type model described at the beginning of this section. For the first data set,
we have chosen a ¼ b ¼ 9 and r ¼ 2 implying q ¼ 0.1, whereas for the second
data set, we choose a ¼ b ¼ 4 and r ¼ 24 implying q ¼ 0.75. Namely, low and
high autocorrelation respectively. It is worth noting that simulating from such a
model is an easy task if one uses the representation (1). To model such data sets
we fit the model described in Section 3.2, that is the specification corresponding to
n ¼ 2. In this case we do not restrict ourselves in the dependence structure and we
assume a general form of the covariance function given by the orthonormal cosine
basis representation

rðx; yÞ ¼
X1
k¼1

V 2
k cosðkpxÞ cosðkpyÞ: ð19Þ

This choice give us a wide flexibility in the dependence structure. For more on this
sort of covariance functions we refer to Grenander (1981).

For the estimation of the parameters we have truncated the series
representation (19), that is we consider the estimation of the vector V ¼
(V1,. . .,VM). Specifically we took M ¼ 4. The numerical integration was done
using the globally adaptive Gauss–Kronrod-based integrator and for the
maximum likelihood estimation the Broyden–Fletcher–Goldfarb–Shanno
(BFGS) optimization algorithm was used. See Press et al. (1992) for more on
this algorithm. All the routines were implemented in OX, see Doornik (2002).
Figures 2 and 3 show the results from this estimation procedure. As is evident
from these figures, the joint bivariate density estimators are very good.

5. REAL DATA EXAMPLE

We fit the AR(1)-type model with beta marginals to real data. The data set comes
from daily average wind speeds during the year of 1978 at Rosslare’s
meteorological station in the Republic of Ireland. The data consist of 365
observations, measured in knots and belong to a bigger data set analysed in
Haslett and Raftery (1989) to quantify the power resources of wind energy in the
Republic of Ireland. The data can be obtained in Raftery’s web page http://
www.stat.washington.edu/raftery/index.html. Figure 4 shows the data together
with its histogram, autocorrelation and partial autocorrelation function.
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Following the same line as in Section (4), we fit our model using the covariance
function (19) truncated at M ¼ 15. A way to visualize the fitting of such an order
one model, can be done by comparing the estimated bivariate distribution fXt,Xt)1
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Figure 2. Bivariate densities fXt,Xt)1
(x,y) and their contours for the stationary beta model with

correlation q ¼ 0.1. The estimation was done assuming the cosine representation (19) truncated at
M ¼ 4.
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Figure 3. Bivariate densities fXt,Xt)1
(x,y) and their contours for the stationary beta model with

correlation q ¼ 0.75. The estimation was done assuming the cosine representation (19) truncated at
M ¼ 4.
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with the one corresponding to the data. In Figure 5, this two distributions are
superimposed. In here, it is remarkable the ability in the model to capture high-
moment dependence structures, such as the noticeable hump in the bivariate
density corresponding to the data.

6. DISCUSSION

We have introduced a highly flexible way to model the dependence structure for
an AR(1)-type stationary model. Moreover, this is achieved in a natural way using
a Bayesian nonparametric predictive density, based on a single observation, to
model the one-step transition density.

We have focused on the Gaussian process prior of Lenk (1988). Clearly
alternative nonparametric priors are feasible. Here we mention the possibility of a
mixture model; such as

fP ðxÞ ¼
Z

Kðx; hÞdP ðhÞ;

where K is a kernel density and P is a random distribution function, such as a
Dirichlet process. This is the well known and widely used Mixture of Dirichlet
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Figure 4. Daily average wind speeds for 1978 at Rosslare’s meteorological station in the Republic of
Ireland.
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Process model. If E(P) ¼ Q then the marginal density is q(x) ¼
R
K(x; h)dQ(h)

and the transition density is given by

pðx; yÞ ¼ EffP ðxÞfP ðyÞg=qðxÞ:

This is quite easy to simplify. Other possible priors include P�olya trees, Lavine
(1992) and mixtures of Bernstein polynomial priors, Petrone (1999). These priors
will form the basis of future research.
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