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ABSTRACT

The innovation random variable for a non-negative self-decomposable random variable
can have a compound Poisson distribution. In this case, we provide the density function
for the compounded variable. When it does not have a compound Poisson representation,
there is a straightforward and easily available compound Poisson approximation for which
the density function of the compounded variable is also available. These results can be used
in the simulation of Ornstein-Uhlenbeck type processes with given marginal distributions.
Previously, simulation of such processes uses the inverse of the corresponding tail Lévy
measure. We show this approach corresponds to the use of an inverse cdf method of a
certain distribution. With knowledge of this distribution and hence density function, the
sampling procedure is open to direct sampling methods.
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1 Introduction

Recent interest has focused on Ornstein-Uhlenbeck (OU) type processes and their application
in stochastic volatility models. This application relies mainly in the subordination of Brownian
motion with self-decomposable (SD) processes as operational time. See Sato (2001) for more
on subordination using SD processes. A detailed treatment of an application in stochastic
volatility models is found in Barndorff-Nielsen and Shephard (2001). An important issue for
volatility models is their simulation. OU type processes are stationary processes driven by
a positive Lévy process, without Gaussian components, and with SD marginals. Therefore,
suitable representations of such processes (similarly SD random variables) can lead to suitable
simulation techniques. For a detailed exposition of general Lévy process representations, see
Rosiński (2001). A common problem for some of these techniques is the need for the inversion
formula of the corresponding tail Lévy measure.

In this paper we discuss the simulation of the innovation random variable associated with SD
random variables having tail Lévy measure of the form

N((x,∞)) =

∫ ∞

x

1

y
G(y)dy

for some non-increasing function G. When G(0) is finite, the innovation random variable is
compound Poisson and we find the density function of the compounded variable. When G(0) =
∞ we use novel approximation methods based on the findings in the finite case in order to
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approximately sample the innovation variable. Our approach relies on the direct sampling of
density functions rather than the use of inverse techniques.

The layout of the paper is as follows. In Section 2 we provide a brief background of SD random
variables. Section 3 gives the result of the density function of the compounded variable in the
case of finite G(0). Section 4 presents a useful equality in distribution which will provide us with
an easy way to simulate from the innovation of SD random variables. The result presented in
this section is only valid when the tail Lévy measure is finite at zero. However, for the non-finite
case, an approximation approach is presented in Section 5. Section 6 provides the relation with
OU type processes and their representations.

2 Background

A non-negative random variable X is said to be self-decomposable if for all 0 < ρ < 1 there
exists a (innovation) random variable Wρ such that

X
d
= ρX +Wρ. (1)

Here
d
= denotes equal in distribution. Such a random variable X is infinitely divisible (see, for

example, Vervaat, 1979) and if inf{x : pr(X ≤ x) > 0} = 0 (assumed without loss of generality)
then X has log-Laplace transform given by

− log E e−θX =

∫ ∞

0

(

1− e−θu
)

dN(u)

= θ

∫ ∞

0
e−θyN(y)dy (2)

where N(·) is a (Lévy) measure on (0,∞), N(y) = N((y,∞)), satisfying N(1,∞) < ∞ and
∫ 1
0 udN(u) < ∞, or in terms of the tail Lévy measure

∫ 1
0 N(u)du < ∞. If we denote by LZ(θ)

the Laplace transform of the random variable Z, then

LWρ(θ) =
LX(θ)

LX(ρθ)
= exp

{

−θ

∫ ∞

0
(e−θy − ρe−θρy)N(y)dy

}

= exp

{

−θ

∫ ∞

0
e−θyNWρ(y)dy

}

, (3)

where NWρ(y) = N((y, y/ρ)) = N(y)−N(y/ρ), is the Lévy measure corresponding to Wρ and
satisfies the same conditions as N .

In the case when X is a non-negative SD random variable, the tail Lévy measure takes the form

N(x) =

∫ ∞

x

1

y
G(y)dy,

for x > 0 and G is a decreasing function. See Sato (1999) Section 53.

If G(0) := limy↓0 G(y) < ∞, we can set S(y) := G(y)/G(0) as a well-defined survival function
corresponding to a distribution function F (y). With this notation, N(x) can be rewritten as

N(x) = τ

∫ ∞

x

1

y
S(y)dy. (4)

where τ = G(0).
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We will also consider the case when G(0) = ∞, to be considered in Section 5. See Bondesson
(1982; Section 3) for background and particular examples relating to these sort of Lévy measures.
A representation of X as a shot-noise random variable with exponential response is available;

X =
∞
∑

i=1

Vi e
−Ti ,

where {Ti} denotes the sequence of points of a stationary Poisson process with intensity 1 and
the Vi are independent and identically distributed from F . See Vervaat (1979) for more details.
On the other hand, a representation of X due to Ferguson and Klass (1972), is given by

X =
∞
∑

i=1

Ji,

where N(Ji,∞) = Ti.

A problem considered by a number of authors in the early eighties concerned representations of
the innovation random variable Wρ. Suitable representations may lead to simulation methods.
Lawrance (1982) found a representation of Wρ when X is gamma distributed, say ga(τ, 1), in
terms of a compound Poisson distribution,

Wρ =
k
∑

i=1

Yi and k ∼ Po(−τ log ρ),

where the Yi are independent and identically distributed random variables. Lawrance (1982)
provided the Laplace transform for Y , given by

E e−θY = 1−
log

(

1+ρθ
1+θ

)

log ρ

and the result that Y
d
= ρU E, where U is a uniform random variable from [0, 1] and E an

exponential random variable with mean 1, independent of U . This clearly gives an easy way to
simulate random variates from Wρ.

The main objective of this paper is to generalize the Lawrance (1982) result to a wider family
of positive self-decomposable distributions. The innovation random variables considered in the
next section are also compound Poisson and we provide the density function for the compounded
variable Y explicitly.

3 Finite activity case G(0) < ∞
Here we focus on the particular case of self-decomposable random variables, for which the Lévy
measure may be expressed as (4) with G(0) < ∞. We will deal with the infinite case in Section
5.

Theorem 1. The distribution for the innovation variable Wρ of a self-decomposable random
variable X, with Lévy measure expressed as in (4), can be represented as a compound Poisson
random variable

Wρ =
k
∑

i=1

Yi (5)
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where k ∼ Po(−τ log ρ). Furthermore, the compounded variable Y has density function

h(y) =
1

y log ρ
{S(y/ρ) − S(y)} , (6)

where S(y) = G(y)/G(0), and h has distribution function

H(y) = 1 +
1

log ρ

∫ υ/ρ

υ

S(y)

y
dy.

Proof. First note that from assumption (4) we have

NWρ(υ) = N((υ, υ/ρ)) = τ

∫ υ/ρ

υ

1

y
S(y)dy. (7)

Hence the total mass for the measure NWρ is given by

NWρ((0,∞)) = lim
υ↓0

NWρ(υ)

= τ lim
υ→0

{

S(y) log(y) |υ/ρυ −
∫ υ/ρ

υ
log(y)dS(y)

}

= −τ log ρ. (8)

Therefore, normalizing NW , we can define

H(υ) :=
NWρ(υ)

−τ log ρ
=

∫ υ/ρ
υ

1
yS(y)dy

− log ρ

and

H(υ) = 1 +
1

log ρ

∫ υ/ρ

υ

1

y
S(y)dy

The density function, corresponding to H(·), is given by

h(y) =
1

y log ρ
{S(y/ρ) − S(y)} .

We now need to show that H(·) is a well-defined distribution function on (0,∞).

1. h(·) is nonnegative

2. H(υ) is non-increasing since N
′

Wρ
(υ) = τυ−1 {S(υ/ρ) − S(υ)} < 0

3. If S(·) is continuous at 0 then H(0) = 0

4. It remains to prove that H(y) → 0 as y → ∞, that is NWρ(υ) → 0 as υ → ∞. For any
ǫ > 0 there exists υǫ > 0, with such that G(υ) < ǫ for all υ > υǫ. If ǫ

′ > 0 and υǫ as above
with ǫ = −ǫ′ log ρ, then

∫ υ/ρ

υ

G(x)

x
dx <

∫ υ/ρ

υ

ǫ′

x
dx = ǫ.

4



Once shown that H(·) is a well-defined distribution function we can verify that Wρ is distributed
as a compound Poisson random variable with compounded variable Y ∼ H(·). Now

E
[

e−θWρ

]

= E
[

[LY (θ)]
k
]

= exp

{

−λ

(

1−
∫ ∞

0
e−θy h(y) dy

)}

,

where λ = −τ log ρ, and

∫ ∞

0
e−θy h(y) dy = θ

∫ ∞

0
e−θy H(y) dy

= 1− θ

λ

∫ ∞

0
e−θy NWρ(y) dy.

Therefore,

E
[

e−θWρ

]

= exp

{

−θ

∫ ∞

0
e−θyNWρ(y)dy

}

(9)

Expression (9) coincides with (3), then H(u) is as stated. This completes the proof.

If pr(Y = 0) = 0 then pr(Wρ = 0) = pr(k = 0) = e−λ = ρτ . If G(0) = ∞ the representation
presented in Theorem 1 is not valid, since S(·) is not a survival function. An example of this
case is given when we assume that X is inverse Gaussian (IG). See Example 3 for more on this.

Example 1. Lawrance (1982).
If X is ga(α, 1) then N(x,∞) = α

∫∞
x y−1 e−y dy and so

h(y) =
1

−y log ρ

{

e−y − e−y/ρ
}

.

This has the Laplace transform given earlier in Section 1; that is,

∫ ∞

0
e−θy h(y) dy = 1−

log
(

1+ρθ
1+θ

)

log ρ
.

This density generalises the exponential density which arises as ρ → 1. All the moments exist
and EY r = −(r − 1)!(1 − ρr)/ log ρ.

Example 2.

Now let us take G(y) = e−yξ , ξ > 0. Note that for ξ = 1 we are in the case of Example
1. The function S(x) := G(x) is the survival function corresponding to a random variable
V ∼ Weibull(ξ, 1). Clearly, for this case, we can verify

∫ 1

0
un(u) du = τ

∫ 1

0
e−uξ

du < ∞ and N(1,∞) = τ

∫ ∞

1

e−uξ

u
du < ∞,

leading to a valid infinitely divisible random variable X. Here the compounded random variable
in the representation for Wρ has density function

h(y) =
1

−y log ρ

{

e−yξ − e−(y/ρ)ξ
}

.
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4 Sampling Y

Let us assume that S(·) has a density function with respect to Lebesgue measure. Then we can
write the density function h(y), of the compounded random variable Y , as

h(y) =
1

− log ρ

∫

f(y/z)I(ρ < z < 1)

z2
dz

where f(·) denotes the density function corresponding to S(·). Thus let us consider the joint
density function given by

h(y, z) =
f(y/z)I(ρ < z < 1)

−z2 log ρ

and the marginal density function for the latent variable Z is given by

h(z) =
I(ρ < z < 1)

−z log ρ
.

A random variable Z from this density function can be taken as Z = ρU , where U is uniform
from [0, 1]. Consequently, we can deduce that

Y
d
= V ρU , (10)

where V ∼ f and is independent of U . Representation (10) provides us with an easy way to
simulate random variates Y , and therefore also Wρ, Figure 1 illustrates some simulations of Y
corresponding to Example 1 and Example 2.

5 Infinite activity case G(0) = ∞
Our aim here is to approximate the distribution of the underlying innovation random variable
when Wρ is not compound Poisson; when G(0) = ∞. It is well known that an approximation
can be made via compound Poisson random variables. In Bondesson (1982) this approximation
was mentioned for general infinitely divisible Lévy processes. However, in the particular case of
SD distributions, a different approximation turns out to be useful.

Our method is now introduced. In the case when G(0) = ∞ we can approximate (7) with

N
ǫ
Wρ

(ν) =

∫ ν/ρ

ν

Gǫ(y)

y
dy

where

Gǫ(y) = G(ǫ)I(y ≤ ǫ) +G(y)I(y > ǫ)

for ǫ > 0. Here Gǫ(0) = G(ǫ) < ∞ and N
ǫ
Wρ

(ν) → NWρ(ν) as ǫ → 0. We could equally use the
approximation G∗

ǫ (y) = G(y + ǫ) but in this paper we use Gǫ(·).

Proposition 1. When G(0) = ∞ the approximation W ǫ
ρ for the innovation random variable

converges weakly to Wρ, that is,

W ǫ
ρ

d→ Wρ, as ǫ → 0.

Here
d→ denotes convergence in distribution.
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Proof. In order to proof convergence in distribution we use continuity theorem. Therefore, it
is sufficient to show LW ǫ

ρ
(θ) → LWρ(θ) as ǫ → 0. Using expression (3), we see that convergence

of Laplace transforms is the same as proving the following;

lim
ǫ→0

∫ ∞

0
e−θνN

ǫ
Wρ

(ν)dν =

∫ ∞

0
e−θνNWρ(ν)dν.

Notice that ǫ 7→ N
ǫ
Wρ

(·) is a decreasing function with NWρ(·) as the limit as ǫ → 0 and therefore
the monotone convergence theorem applies and the result follows.

For the approximated Lévy measure we have

N ǫ
Wρ

((0,∞)) = lim
ν↓0

N
ǫ
Wρ

(ν) = −τǫ log ρ (11)

where τǫ = Gǫ(0) = G(ǫ). Let us define Sǫ(y) := Gǫ(y)/G(ǫ), which is a survival function on
(0,∞). Consequently, define

hǫ(y) =
Sǫ(y/ρ)− Sǫ(y)

y log ρ
(12)

and

W ǫ
ρ =

kǫ
∑

i=1

Y ǫ
i (13)

where kǫ ∼ Po(−τǫ log ρ) with the random variables Y ǫ
i having density function given by (12).

Clearly, W ǫ
ρ has a compound Poisson distribution. The same arguments used in Theorem 1

follow in this case, leading to a well-defined probability density (12) for the compounded random

variable (13). As before, we can write Y ǫ d
= Vǫρ

U , where Vǫ has distribution function Fǫ(x) =
1− Sǫ(x).

Example 3.

If X ∼ IG(δ, γ) then the corresponding Lévy measure has density n(x) = G(x)/x, with

G(x) =
δ√
2πx

exp

{

−γ2x

2

}

,

and clearly G(0) = ∞. In this case,

Sǫ(y) =

√
ǫ exp

{

−γ2

2 (y − ǫ)
}

√
y

I(y > ǫ) + I(y ≤ ǫ)

defines a survival function with corresponding density function

fǫ(y) =

√
ǫ exp

{

−γ2

2 (y − ǫ)
}

(1 + γ2y)

2y3/2
I(y > ǫ). (14)

The density (14) can be written as

fǫ(x) ∝ h(x)k(x)I(x > 0), x = y − ǫ (15)
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and

h(x) =

√
ǫ

2(x+ ǫ)3/2
, k(x) = e−γ2x/2

{

1 + γ2(x+ ǫ)
}

. (16)

Hence, in order to simulate from the random variable Vǫ with density (14) we can simulate from
(15) and add ǫ. The decomposition in (15) allows us to use the acceptance-rejection method by
simulating from h(·) in (16) and with acceptance criteria U ≤ k(x)/M , M = supx k(x) = k(m)
with m = max{γ−2 − ǫ, 0} and U is an uniform [0, 1] random variate. See Rubinstein (1981).
Therefore, to simulate from the random variable (13) we follow the next steps:

• For any ǫ > 0 simulate kǫ ∼ Po(−G(ǫ) log ρ).

• Simulate kǫ independent random numbers from an uniform distribution in [0, 1] and kǫ
independent random numbers from Vǫ as described above.

• Compute (13).

In order to illustrate this method graphically, notice that we can approximate a SD random
variate X by simulating from Xǫ = ρX + W ǫ

ρ . If X ∼ IG(δ, γ) then ρX ∼ IG(δ
√
ρ, γ/

√
ρ),

therefore, a random variate from X can be approximated as the sum of a random number from
ρX ∼ IG(δ

√
ρ, γ/

√
ρ) and a random number from W ǫ

ρ .

As an alternative to our direct sampling method, Vǫ can be simulated using the Inverse cdf
method. This corresponds to the standard inverse Lévy method. Figure 2 reports some sim-
ulations using the inverse cdf method and our method. The reduction in computer-time is
considerable; the simulation of 3,000 random variables took 0.36 seconds for the inverse cdf
method compared with 0.06 seconds for ours. All computations were done in Ox; see Doornik
(2001).

6 Relation with OU type processes and their representations

In Barndorff-Nielsen and Shephard (2001) a crucial feature is the simulation of the innovations
for OU type processes. OU type processes are stationary processes with marginal distributions
given by SD distributions (see for example Sato, 1999). Here we focus on OU type processes,
when a prior choice of the stationary distribution is given. An OU process can be represented
as follows

X(t) = ρtX(0) + ρt
∫ at

0
esdL(s) for ρ = e−a, a > 0 (17)

where L(·) is a Lévy process on (0,∞). See Wolfe (1982). In order to simulate from the
innovation part (the second term in (17)), Barndorff-Nielsen and Shephard (2001) made use of
the following result;

∫ Υ

0
f(s)dL(s)

d
=

∞
∑

i=1

M−1(ξi/Υ)f(Υri)

where M−1 denotes the inverse of the tail Lévy measure corresponding to L(1). Here {ξi} and
{ri} are two independent sequences of random variables, with the ri being independent and
identically distributed from the uniform distribution on [0, 1] and ξ1 < · · · < ξi < · · · are the
jump times of a Poisson process with intensity 1. It is worth noting that the above result can
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be seen as particular case of a representation given by Ferguson and Klass (1972) (see Walker,
2001). For the OU-innovation this representation simplifies as

X(t) = ρtX(0) + ρt
∫ at

0
esdL(s)

d
= ρtX(0) +

∞
∑

i=1

ρ(1−ri)tM−1(ξi/at)

d
= ρtX(0) +

∞
∑

i=1

ρtriM−1(ξi/at). (18)

Example 4.

Consider a Lévy process L with gamma ga(τ, 1) increments, thusM−1(x) = max {0,− log (x/τ)}.
In this case the innovation part (the second summand in (18)) is represented as

ρt
∫ at

0
esdL(s)

d
=

∞
∑

i=1

ρtri log(1/ci)I(0 < ci < 1)

=

N(1)
∑

i=1

ρtri log(1/ci)

where c1 < · · · < ci < · · · are the jump times of a Poisson process with intensity aτt (or
−tτ log(ρ)) and N(1) corresponding number of jumps before 1. Let k be the number of jumps
before 1, then given k the {ci} are independent and identically distributed from a uniform
distribution in [0, 1]. Hence if we define Vi = − log(ci) thus Vi ∼ Exp(1) and therefore

ρt
∫ at

0
esdL(s)

d
=

N(1)
∑

i=1

ρtriVi

which, for t = 1, is exactly the representation provided in Example 1.

Knowledge of the distribution for the innovation random variable (or an approximation to it) of
a self-decomposable random variable gives new ways of simulating the innovation part of an OU
type process. The point of view presented here allows us to use any suitable random variable
simulation method (not only inverse methods).
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Fig. 1: Simulations from the compounded random variable Y , using representation (10) with

V ∼ Weibull(ξ, 1). S(y) = e−yξ , 10,000 simulations. The solid lines represent the true densities.
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Fig. 2: Approximation of self-decomposable random variable IG(1,1) using 3000 simulations of
W ǫ

ρ and ρX with ρ = 0.5. The simulations for the compounded random variable were done using
the inverse CDF method (a) and the acceptance-rejection method (b). The solid line represents
the true density.
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