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THE USE O F  CONFIDENCE OR FIDUCIAL LIMITS 

ILLUSTRATED I N  THE CASE OF T H E  BINOMIAL. 


BYC. J. CLOPPER, B.Sc., AND E. S. PEARSON, D.Sc. 

(1) Qefzeral Discussion. 
In  facing the problem of statistical estimation i t  may often be desirable to 

obtain from a random sample a single estimate, say a; of the value of an unknown 
parameter, a, in the population sampled. It has always, however, been realised that 
this single value is of little use unless associated with a measure of its reliability 
and the traditional practice has been to give with a its probable error (or more 
recently its standard error), in the form 

From this information it was possible, if the sample was not too small, to draw the 
conclusion that the unknown value of a lay within the limits 

a l = a - 3  x p . e ( a )  and a a = a + 3  x p . e ( a )  ...............(2) 
with a high degree of probability. But i t  was neither easy to give any precise 
definition of this measure of probability nor to assess the extent of error involved 
in  estimating the value of p .  e (a) from the sample. 

The recent work of R. A. Fisher introducing the conception of the fiducial 
interval has rnade it possible under certain conditions to treat this problem of 
estimation in a simple yet powerful manner *. It is proposed in the present paper 
to illustrate on the following problem the ideas involved in this method of approach. 

A sample of n units is randomly drawn from a very large population in which 
the pl.oportion of units bearing a certain character, ,4, is p. In  the sample m indi-
viduals bear the character A and n -x do not, p is unknown and the problem is 
to obtain limits pl and pasuch that we may feel with a given degree of confidence 
that 

p 1 < p < p 2  ....................................(3). 

In the f i r ~ t  place, how is this degree of confidence to be defined ? The under- 
lying conception involved in all problems of this type is extremely simple. I n  our 
statistical experience it is likely that we shall meet many values of n and of x ;  
a rule must be laid down for determining pl and pa given n and m. Our confidence 
that p lies within the interval (pl, pa) will depend upon the proportion of times 
that this prediction is correct in the long run of statistical experience, and this 

* R. A. Fisher, Proc. Camb. Phil. Soc. 26 (1930), p. 528; Proc. Roy. Soc. A 139 (1933), p. 343. 
References to the discussion of these concepts in lectures may also be found in  papers published by 
students of J .  Neyman. See for instance pp. 28-29 of a paper by W .  Pytkowski written in  1929-30 
and published at  Warsaw in 1932, entitled, " The dependence of the income in small farms upon their 
area, the outlay and the capital invested in cows." 



may be termed the confidence coejtcient. Thus subject to certain approximations 
discussed below, arising from the fact that x can assume only discrete integral 
values in this particular problem, i t  is possible to choose the fiducial or confidence 
limits pl and pa in such a manner that, for example, the prediction 

(1) will be correct in 95 "I0of cases rnet with in the long run of experience, 
and wrong in 5 "I,,in 2.5 "1, because p < P I ,  and 2.5 "1, because p > p a .  
Or again, 

(2) will be correct in 99 "1, of cases and wrong in 1"I,, in 0.5 "1, because 
p spl,and in 0.5 "/, because p 3 ~ 2 .  

These intervals (yl, p2) may be termed either the central* confidence or 

* I n  the charts described below the coefficients .95 and .99 were chosen as giving two useful pairs 
of limits. I t  is not essential that the intervals chosen should be "central," but for many purposes this 
appears to be the moat convenient arrangement. 
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central fiducial intervals arid are associated with confidence coefficients of -95 and 
.99 respectively. I n  his development of the subject, R. A. Fisher has used the 
term "fiducial probability" to describe the chance that in the long run a correct 
prediction will be made of the limits within which the unknown parameter falls. 
The concept of fiducial probability cannot, i t  appears, be distinguished from that 
of ordinary probability, and it seems possible that the use of this term may lead 
to some misunderstanding, especially when associated with a " fiducial distribution." 
We are inclined therefore to adopt the terminology suggested by J. Neyman, and 
to coni7ey what is fundamentally the same notion by specifying the confidence 
coefficient associated with an interval. Thus the confidence coefficient may be 
regarded as a particular value of the fiducial probability selected to form the basis 
of the calculation, to be employed in repeated experience, of the confidence 
interval *. 

The rnethod of solution of the problem may be illustrated with the help of 
Fig. 1,in which n = 10 ; p and x have been taken as coordinate axes, so that p 
may lie between 0 and 1,while x may assume any of the integral valiies O,1, ... 10. 
In our experience with samples of 10 individuals, no point (x, p) can lie outside 
the square of the diagram. For a given value of p, the chance of occurrence of 
different values of x will be given by the tertns of the binomial expansion (q +p)lO. 
Let (a) S ( p ,  n ;  0 ...x), and (b) S ( p ,  9 2 ;  x . . .  n), denote the sum of (a) the 1st x +  1, 
and ( 6 )  the last 11 - x  + 1 terms. Then while i t  will not in general be possible to 
choose values of xl and xz so that both S ( p ,  n ; 0 ...xl) and S(p, n; xz ...n) equal 
exactly some selected value, srty .025, it will be possible to choose x1 and x2 so that 

~ ( p ,  ..................(41,
n ;o ...xl )s '025< S ( p , n ;  O . . . X I + + I )  

S (p ,n ;x2  ...n)< '025<S(p ,n ; (xz -1 )  ... 12) ...............( 5 ) .  

The position is illustrated diagrammatically below : 

If it is supposed that such values are determined for $1 and throughout the 
whole range, p =0 to 1,we shall obtain t,wo series of stepped lines running across 
the diagram as shown in Fig. 1,all points on which satisfy conditions (4) and (5) 
respectively. I t  follows that in the long run of our statistical experience from 
whatever populations random samples of 10 are drawn, we may expect a t  least 
95 "1, of the points (x, p) will lie inside the lozenge shaped belt, not inore than 

* J. Neyman, "On the two different aspects of the representative method: the method of stratified 
sampling and the method of purposive selection," Jour?lal of Royal Statistical Society, xcvrr. pp. 558-606, 
1934. 



2hU/, on or above the upper boundary and not more than 2h0/, on or below the 
lower boundary. If then as a general rule, when x alone is known these boundaries 
are used to determine points (x, pl) and (a,pz),we may have confidence that we 
shall be correct in the estimate pl <p < pz in &bout 95 "1, of cases. If greater 
confidence is desired, we may determine wider limits leading to a higher value of 
the expected percentage accuracy, e.g. 99 "1,. I n  the diagram, va,lues of pl and p2 
corresporlding to x = 2 are shown. 

This plan has been carried out below with the following nlodifications adopted 
for practical convenience : 

(1) The charts prepared are entered with p and 0 =xln, so that 0 5 0 ,< 1, and 
boundaries for n number of values of n can be drawn on the same chart. 

(2) Instead of the stepped boundaries, curves have been drawn as in Fig. 1 
passing through the inner "corner" points, i.e. the points (mlp) and (x2p) for 
which p is such that S(p, n ;  0 .. . XI) and S ( p ,n;  x2... I & )  are exactly equal to the 
desired chance (in the cases chosen, these chances are .025 and .005). These curves 
are more convenient than the stepped lines for interpolation for intermediate 
values of n. Since no possible point (x, p )  can fall inside the area between a curve 
and the steps, no error is involved in using the curves. 

(3) While the "corner" points could have been calculated precisely and the 
curves drawn through them, it was considered sufficiently accurate fhr the purpose 
to obtain the curves by an approximate method of interpolation described below. 

Before describing the charts and illustrating their use, i t  may be well to make 
clear the sense in which this method of estimation in terms of a confidence or 
fiducial interval does not depend on any a pr ior i  knowledge regarding possible 
values of p. Consider the following situation. Suppose that in the course of our 
experience samples of 30 are continually drawn, and that although we are not 
aware of the  bc t ,  these are taken from populations in which p has three different 
values only, narnely 4,4 and +. Further that the proportions of times these three 
cases are met with are as A-:$:& respectively. 

The expectation, on a basis of 10,000 draws, is shown in Fig. 3, in which the 
axes of p and x have beer] reversed for convenience. For example, for p = i ,  
x = 12, the expectation is 881, while for p =8, x = 28, i t  is 1. The chart of Fig. 4 
described below will provide for each of the 31 possible values of x the limits for 
the confidence interval, with coefficient .95, for p. Thus when m =  15, we find 
pl= .31, pz= .69. Taken over the whole experience, these intervals include the true 
population value of p in 9676 out of the 10,000 cases, and in the remaining 324 
do not, that  is to say we are wrong in less than 5 % of cases. This is the risk of error 
that we have accepted, and i t  is quite independent of the particular set of three 
values of p introduced, or the relative frequency with which they are encountered 
in our experience. 

I t  will be noticed, however, from the figures in the margin, that the percentage 
of wrong judgments differs according to the value of z, from 100 to 0. We cannot 
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THE CONFIDENCE BELT AND A PRIOR1 PROBABILITY. 
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therefore say that for any specified value of x the probability that the confidence 
interval will include p is .95 or more. The probability must be associated with the 
whole belt, that is to say with the result of the continued application of a method 
of procedure to all values of x met with in our statistical experience. 

Indeed i t  will be clear that if we had information a priori regarding the values 
of p likely to be met in our experience, and if this information could be expressed 
in precise numerical form, i t  would be possible to shift the confidence belt and so 
narrow the limits of uncertainty while retaining the same risk of error. For instance, 
if we knew that 5 ~p ~ 8 ,we should certainly cut off the two points of the lozenge 
by lines a t  p = 3 and p =3 .  

In  practice, however, i t  is rare 

(1) for the a priori information to be expressed in exact form, 

(2) even when i t  appears so expressible, for the working statistician to have 
time to calculate suitable modification for the limits. 

Under general conditions, therefore, the statisticiau will usually be satisfied with 
limits which are "safe" in the sense that they give an expectation of long run 



accuracy which is precisely known*, and thus avoid the uncertain risk of error 
involved in an attempt to introduce a priovi information. 

(2) Calculation and use of the charts. 

The following method was employed in obtaining points from which to draw 


the curves in Figs. 4 and 5. 

Samples with n = 10, 15, 20, 30. 
Use was made of the tables giving the continued sum of the binomial terms, 

published in one of the Medical Research Council's Reports?. From these tables 
it is possible to find the sum of any nurnber of binomial terms for p =~025, '05, 
*075, .lo, .15, *20, . . . , -85, *90, .925, -95, -975. I t  will happen only rarely that for 
these values of p, S ( p ,  n ; 0 .. . xl)or S ( p ,  n ; xa . . . n) approach the desired values 
of .025 or ,005, i.e. that we can obtain directly the inside "corners" of the steps of 
Fig. 1. For the purpose of the charts, however, it was considered that suficient 
accuracy would be obtained by interpolation for x in the tables. Take for example 
the case of n = 20 and consider the sums of the binomial terms for p =0.45 given 
below. At what points should the two curves associated with n =  20 cut the lines 

p = '45 in the charts ? The point x =3 (x /n= .150) is approximately a "corner" 
point, since the sum of the first 4 terms equals almost exactly .005, but the other 
points must be obtained by interpolation. Thus we argue : 

( a )  The lozuev .025 point. The sum of the terms 0 . .. 4  is .0180 (< .025), and 
the sum of the terms 0 . .  . 5  is '0553 (> '025); a linear interpolation gives for c, 
4.17 (xln = .208). 

( b )  The upper ,025 point. The sum of the terms 13. .  .20 is 1- ,9420 = ,0580, 
and the sum 14. ..20 is 1- -9786= '0214. Take x = 13.90(xln = .6.95). 

( c )  The upper '005 point. The sum of the terms 15 .  ,. 20 is 1-.9936 = '0064, 
and the sum 16 . .  .20 is 1- .9985 = .0015. Take x = 15.29 (3/n= .764). 

" This is not strictly true of course, since only an upper limit to the error is known, owing to the 
fact that x can assume discrete values only. As n increases, however, the true risk will rapidly approach 
the limiting value. In cases where the coefficient, x, is a continuous varisble such as a sample mean or 
standard deviation, this ditticulty does not arise. 

t Reports on Biological Standards, "11.Toxicity Tests for Novarsenobenzene," by Durham, Gaddum 
and Marchal. 

$ This form of interpolation, if crude, appeared adequate for the curve drawing. 
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CONFIDENCEBELTS FOR P (CONFIDENCE COEFFICIENT= +95) 

SCALE OF 6 

FIG .+. 


Consequently in Fig. 4 the curves marked n = 20 cut the line p = .45 a t  
s,ln = ,208 and %9.5,and in Fig. 5 a t  3;/lz = '150 and .764. 

Fresh calculations of binomial ternis were made for 11. = 50, 100 and 250, while 
the l in~i ts  were obtained from the normal curve in the case n = 1000. 

It will be noted that the curves cut the axis z/n= 0 a t  points a t  some distance 
fi-om p =0 when 78 is small. The points of intersection correspond in the two 
diagrams to those values of p for which the first term of the binomial qn = (1 - P ) ~  

,025 and .005 respectively. On the other side, the end points ou the axis 
x / i ~= 1 correspontl to values of p for which the last, term, pn, equals ,025 and .005. 

The charts have been prepared to give rapid answers in problems such as the 
following : 

( 1 )  A sample has been drawn (72 and x known), to obtain the confidence or 
fiducial interval for p. 



CONFIDENCEBELTSFOR P (CONFIDENCECOEFFICIENT = -99) 

Example A.  The toxicity of a drug may be measured by the proportion, p, of 
mice in a standard laboratory population that will die after injection with a dose 
of given strength. Out of a sample of 30 mice' randomly selected from the popula- 
tion, 8 die after injection ; within what limits may we expect that p lies ? Turning 
to Fig. 4, and taking n =30, x/n =8/30 =*267,i t  will be seen that we may say that 
el2 < p < -46,if we are prepared to accept a risk of error of not more than 1 in 20. 
To obtain greater confidence in prediction (risk of error 1 in 100) we must turn to 
Fig. .5 and obtain .09<p < .52. 

(2) To plan in advance the size of sample necessary'to provide a desired degree 
of accuracy in estimation. 

Exaw~pleB. I n  a manufacturing process a crude index of quality, P, has been 
the percentage of articles which pass a certain test. This index has fluctuated in 
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the past round P =60, but i t  is proposed to make an intensive effort to improve 
quality (which will mean the raising of this percentage) by tightening the control 
of manufacture. Improvement is to be judged by studying the changes in the 
proportion of articles (xln)passing the test in a random sample of n articles. How 
large would n need to be to obtain from the sample an estimate of P,with a range 
of uncertainty of not more than 5 ? 

At the start, the value of p =P/100 in the material sampled is not more than 
.60, and we wish to determine 7z so that the confidence belt will be of breadth 
about .05. On the assumption that a confidence coefficient of .95 is adequate, we 
may use Fig. 4. I t  will be seen that for xln having values between .6 and .8, n must 
be rnore than 1000 for the interval pa - pl to be as small as .05*. In many cases 
the testing of so large a sample would be quite out of the question, and this result 
points to the fact that an index of this type is not an efficient measure of quality. 
Much more information of changes could probably be drawn from n smaller sample, 
if the index could be based on the mean value of some measured character deter- 
mined for each article of the sample. 

(3) To determine the limits of sampling variation that may be expected in x 
when p is known, and so determine the size of sample needed. 

Example C. There are two alternative hypotheses regarding the chance of an 
individual in a certain population bearing a given character; the alternatives are 
that p =4or p = 4. Such might be the case in some genetic investigation. How 
large a sample must be planned to make i t  practically certain that we can dis- 
criminate between the two hypotheses ? 

In this case we are concerned with the sampling variation of x for p =4 and 
p =4, and n should be chosen so large that there is no "overlap" of any consequence 
between the two distrib~t~ions. Suppose we choose n so that the upper .005 point 
of the x di~tribut~ionfor p =4, as judged from the curves of Fig. 5, corresponds to 
the lower ,005 point of the distribution for p =4. This will occur when n.is slightly 
over 100, say 110 t .  

* Since for large values of n the upper and lower bounds of the confidence belt are very nearly 
parallel lines making an angle of 4 5 O  with the axes, and the binomial may be represented by a normal 
curve, the breadth of the belt is approximately 4 dp(1 - p ) / n ,  wllich if equated to .05 gives n= 1600 for 
p = .60 and n=1000 for p = .80. 

t [It is interesting to consider what the solution would be, if the two binomials, ( ~ , + q , ) ~and 
(pl+q2)n,were replaced by normal curves. The means of these curves will be ~ t p ,and np, (p ,>p , )  while 
their standard deviations will be u,= J n x ,  and g,= J n i i , .  Let I represent the overlap and x, re-
present the distance from mean to overlap in first curve and x2 represent distence from overlap to mean 
in second curve. Accordingly 

n (pz- p l )  =x, +x, ..... . . .... . .... . .. . ........ . ... . ... . .. . . .. . . . . .(i). 
If 1 be the overlap, and 4(1 - a , )  be the area cut ofi from the first curve and f ( I  - a , )  from the second 
curve, it will be reasonable to tabe 

& ( 1- a,)=& (1- a,) =@. 

Thus xl/ul and xa/uz must be obtained from the tables of the normal probability integral with 
f ( 1  + a )  =1 - 41, or say they have the value i .  



If we were prepared to accept a greater risk of an inconclusive result, which we 
might well be prepared to do if the sample could be readily increased in size in a 
doubtful case, then we might choose n so that the upper and lower .025 points of 
the x distributions correspond. Turning to Fig. 4, it is found that this occurs when 
n is about 65. 

It follows from (i) that 
n ( ~ s-p I )=F ( J l X q l +  JnPzQ2) 

In the case in the text p , = f ,  p ,=f  and 1=.005, 1 -&l=-9975,  mhioh corresponds to ( = 2 . 8 1  nearly. 
Thus &=2-81 ( J 3 + 2 ) = 2 . 8 1  x3.7205=10.455 according well with the value in the and ~ ~ = 1 0 9 - 3 ,  
text. If we desire to alter the overlap, the first factor ( only is changed in (ii). If 1=.025, then 
& ( . l + a ) = . 9 8 7 5  and t z 2 . 2 4 1 6  \&=2.2416 x 3.7205=Ee34 and ~ ~ ~ 6 9 . 6 ,7 0  as against 65 of textor 
above. ED,] 
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