Api

The Academic Performance Index is computed for all California schools based on standardised testing of students. The data sets contain information for all schools with at least 100 students and for various probability samples of the data.

Elementary/Middle/High School

api00

API in 2000

api99

API in 1999

meals

Percentage of students eligible for subsidized meals

ell

'English Language Learners' (percent)

enroll

number of students enrolled

full

percent fully qualified teachers

sch.wide

Met school-wide growth target?

comp.imp

Met Comparable Improvement target

awards

Eligible for awards program

meals

Percentage of students eligible for subsidized meals

The other data sets contain additional variables pw for sampling weights and fpc to compute finite population corrections to variance.

Details

apipop is the entire population,

apisrs is a simple random sample,

apiclus1 is a cluster sample of school districts,

apistrat is a sample stratified by stype,

and apiclus2 is a two-stage cluster sample of schools within districts.

The sampling weights in apiclus1 are incorrect (the weight should be 757/15) but are as obtained from UCLA.

```
> library(survey)
 data(api)### 6194 observaciones con 37 variables
                                                                 Definir el diseño del muestreo
[1] 664.7126
  sum(apipop$enroll, na.rm=TRUE)
[1] 3811472
> #stratified sample
> dstrat<-svydesign(id=~1,strata=~stype, weights=~pw, data=apistrat, fpc=~fpc)</pre>
> summary(dstrat)
Stratified Independent Sampling design
svydesign(id = \sim 1, strata = \sim stype, weights = \sim pw, data = apistrat,
    fpc = \sim fpc)
Probabilities:
Min. 1st Qu. Median Mean 3rd Qu. Max. 0.02262 0.02262 0.03587 0.04014 0.05339 0.06623
Stratum Sizes:
            100 50 50
obs
                                                              n=100+50+50
design.PSU 100 50 50
actual PSU 100 50 50
Population stratum sizes (PSUs):
      755 1018
4421
Data variables:
     "cds"
                 "stype"
                             "name"
                                                                 "dname"
                                         "sname"
                                                     "snum"
                                                                             "dnum"
                                                                                         "cname"
 [1]
                             "api 99"
     "pcttest"
                 "api 00"
                                         "target"
                                                     "growth"
                                                                 "sch.wide" "comp.imp" "both"
[11]
     "ė11"
                 "yr.rnd"
                                         "acs.k3"
                                                      "ācs.46"
                                                                 "acs.core" "pct.resp" "not.hsg"
[21]
                             "mobility"
o1"
[31] "col.grad" "grad.sch" "avg.ed"
                                         "full"
                                                                 "enroll"
                                                                                         "wd"
                                                     "emer"
                                                                             "api.stu"
> svymean(~api00, dstrat)
        mean
api00 662.29 9.4089
> svytotal(~enroll,
                     dstrat, na.rm=TRUE)
          total
enroll 3687178 114642
Como correr los modelos glm
CASO 1. Una regresión lineal
> (svyglm(api00~ell+meals+full+api99,design=dstrat))
Stratified Independent Sampling design
svydesign(id = \sim 1, strata = \sim stype, weights = \sim pw, data = apistrat,
    fpc = ~fpc)
Call: svyglm(formula = api00 ~ ell + meals + full + api99, design = dstrat)
Coefficients:
                                                                          n=200. gl=n-p-2=200-(5+2)
                                                               api99
(Intercept)
                       e11
                                  meals
                                                  full
                  -0.2653
    19.2397
                                  0.4022
                                                0.1906
                                                              0.9742
                                                                          el 2 tiene que ver con
Degrees of Freedom: 199 Total (i.e. Null); 193 Residual
                                                                          número de estratos menos 1
Null Deviance:
                     3023000
Residual Deviance: 137300
                                 AIC: 1907
> (glm(api00~ell+meals+full+api99,data=apistrat))## sin tomar en cuenta el
Call: glm(formula = api00 ~ ell + meals + full + api99, data = apistrat)
Coefficients:
(Intercept)
                       e11
                                  meals
                                                  full
                                                               api99
                  -0.2271
                                  0.4942
                                                              1.0025
                                                0.2365
   -11.5421
                                                                         n=200. gl=n-p=200-(5)
Degrees of Freedom: 199 Total (i.e. Null); 195 Residual
Null Deviance:
                     2912000
```

'' c

Residual Deviance: 137600 AIC: 1886

CASO 2. Una modelo con respuesta binaria

```
> (svyglm(<mark>I(sch.wide=="Yes")</mark>~comp.imp+meals+awards,design=dstrat,family=quasibinomial()))
Stratified Independent Sampling design
svydesign(id = \sim 1, strata = \sim stype, weights = \sim pw, data = apistrat,
    fpc = \sim fpc
                                                                                       Recomiendan
                                                                                       usar así para
Call: svyglm(formula = I(sch.wide == "Yes") ~ comp.imp + meals + awards,
    design = dstrat, family = quasibinomial())
                                                                                       evitar ciertos
                                                                                         warnings
Coefficients:
(Intercept) comp.impYes
                                   meals
                                             awardsYes
  1.676e-01
               -2.085e+01
                               6.021e-04
                                             4.130e+01
Degrees of Freedom: 199 Total (i.e. Null); 194 Residual
                     183.7
                                                                  n=200. gl=n-p-2=200-(6)
Null Deviance:
Residual Deviance: 94.81
                                  AIC: NA
> (glm(I(sch.wide=="Yes")~comp.imp+meals+awards,data=apistrat, family=binomial))## sin tomar en
Call: glm(formula = I(sch.wide == "Yes") ~ comp.imp + meals + awards,
    family = binomial, data = apistrat)
Coefficients:
(Intercept)
             comp.impYes
                                   meals
                                             awardsYes
                               -0.005204
   0.085155
               -20.418585
                                             41.145161
Degrees of Freedom: 199 Total (i.e. Null); 196 Residual
                     220.4
Null Deviance:
                                                                         n=200. gl=n-p=200-(4)
Residual Deviance: 115.6
                                 AIC: 123.6
```