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Abstract

Mixture models can be used to approximate irregular densities or to model heterogene-

ity. When a density estimate is needed, then we can approximate any distribution on

the real line using an infinite number of normals (Ferguson (1983)). On the other hand,

when a mixture model is used to model heterogeneity, there is a proper interpretation for

each element of the model. If the distributional assumptions about the components are

met and the number of underlying clusters within the data is known, then in a Bayesian

setting, to perform classification analysis and in general component specific inference,

methods to undo the label switching and recover the interpretation of the components

need to be applied. If latent allocations for the design of the Markov chain Monte Carlo

(MCMC) strategy are included, and the sampler has converged, then labels assigned

to each component may change from iteration to iteration. However, observations be-

ing allocated together must remain similar, and we use this fundamental fact to derive

an easy and efficient solution to the label switching problem. We compare our strat-

egy with other relabeling algorithms on univariate and multivariate data examples and

demonstrate improvements over alternative strategies.

When there is no further information about the shape of components and the number

of clusters within the data, then a common theme is the use of the normal distribution

as the “benchmark” components distribution. However, if a cluster is skewed or heavy

tailed, then the normal distribution will be inefficient and many may be needed to model

a single cluster. In this thesis, we present an attempt to solve this problem. We define

a cluster to be a group of data which can be modeled by a unimodal density function.

Hence, our intention is to use a family of univariate distribution functions, to replace the

normal, for which the only constraint is unimodality. With this aim, we devise a new

family of nonparametric unimodal distributions, which has large support over the space

of univariate unimodal distributions. The difficult aspect of the Bayesian model is to

construct a suitable MCMC algorithm to sample from the correct posterior distribution.

The key will be the introduction of strategic latent variables and the use of the product

space (Godsill (2001)) view of reversible jump (Green (1995)) methodology. We illustrate

and compare our methodology against the classic mixture of normals using simulated and

real data sets. To solve the label switching problem we use the new relabeling algorithm.
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Notation

a. s. - denotes almost surely or with probability 1

i. i. d. - stands for independent and identically distributed

1A(·) - denotes the indicator function: 1A(x) =

1, if x ∈ A,

0, if x /∈ A.

δx(·) - denotes the measure giving unit mass to the point x, δx(A) = 1A(x)

R - denotes the set of real numbers, and in general Rk will denote a general Euclidean space

N - denotes the set of positive integer numbers

P - denotes the Dirichlet Process measure with base distribution G0 and concentration parameter c.

supp(f) - denotes the support of the function f , i.e. if f : X → R, then supp(f) = {x ∈ X|f(x) 6= 0}

E(·) - denotes the expectation operator of a random variable

var(·) - denotes the variance operator of a random variable

Pr(A) - denotes the probabilty of the event A

B(Rk) - denotes the Borel σ algebra on the Euclidean space Rk

Γ(·) - denotes the gamma function

B(·, ·) - denotes the beta function, i.e. B(x, y) =
Γ(x)Γ(y)

Γ(x+ y)

∼ - used to stand that X is distributed by G, i.e. X ∼ G

y(1) - denotes the minimum over a set of n observations, and we will denote the maximum as y(n)

R - denotes the range of the data, i.e. if we have a sample of n observations, R = y(n) − y(1)

Probability Distributions

Be(α, β) - denotes the beta distribution

Dir(α1, ..., αk) - denotes the Dirichlet distribution

Ga(α, β) - denotes the gamma distribution with mean α/β

Inv-Ga(α, β) - denotes the inverse gamma distribution

N(µ, σ2) - denotes the normal distribution; the p-dimension version is denoted by Np(µ,Σ), where Σ is

a p× p positive definite matrix

Po(λ) - denotes the Poisson distribution

U(a, b) - denotes the uniform distribution on [a, b]

Wip(m,A) - denotes the Wishart distribution with positive definite scale matrix Ap×p and m > p− 1
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Chapter 1

Introduction

Mixture models are widely used in many scientific fields. They provide a flexible tool

to study data sets arising from irregular densities or to model heterogeneity. The first

known attempt to model heterogeneity, under a mixture modeling setting, can be traced

back to Pearson (1894). While analyzing measurements of the ratio of forehead to body

length of crabs, Pearson had evidence to believe that there were two species present

within the sample. He then used the method of moments to estimate the parameters of

a mixture of two univariate normals.

Nowadays, to fit a mixture model, the preferred methods rely on intensive computing

techniques. On the one hand, to find maximum likelihood estimators for the parameters

of a mixture model, the Expectation Maximization (EM) algorithm, Dempster, Laird,

and Rubin (1977) is used. On the other hand, in a Bayesian setting, a sample from the

posterior distribution of the model is generated via Markov chain Monte Carlo methods

(MCMC), Gelfand and Smith (1990) and Smith and Roberts (1993), and then posterior

distribution summaries are calculated from the MCMC output. A comprehensive review

of Bayesian and Frequentist methods for mixture models can be found in Frühwirth-

Schnatter (2006).

From the Bayesian point of view there are two types of mixture models: One assumes

1



Chapter 1. Introduction 2

there is a finite integer k, which is the number of mixtures required to model the data,

and k is assumed known or unknown and can take any positive integer value. This is

best known as the finite mixture model with k components and is written as

p(yi|w,θ, k) =
k∑
j=1

wjf(yi|θj), independently for i = 1, . . . , n, (1.1)

and let θ = {θj}kj=1 and w = {wj}kj=1. For (1.1) to be a density, the weights, w, must be

non-negative and sum to one. A useful idea when working with model (1.1) is to include

latent allocation variables: z = {zi}ni=1, such that given zi, the component from which

yi has been drawn is known, i.e.

p(yi|θ, zi) = f(yi|θzi). (1.2)

There is a proper interpretation for (1.1): k represents the number of clusters within the

data, wj the weight of cluster j in the population and f(y|θj) a parametric distribution

that models the behavior of cluster j. The latent allocations (1.2) automatically induce

a clustering structure over the observations.

The alternative model consists in mixing a kernel k(y|θ) with respect to a random

distribution function G to define a random density:

fG(y) =

∫
Θ
k(y|θ)G(dθ) =

∞∑
j=1

wjk(y|θj). (1.3)

Since the prior over G is usually taken as a discrete measure, the infinite mixture (1.3)

is derived indirectly. Under this setting, the main aim is density estimation (Lo (1984)),

and there is no explicit parameter modeling the number of groups or clusters, and in

general there is no clear interpretation for the parameters of (1.3). There is no infinite

number of clusters when wj > 0 for all j. However, it is possible to recover a meaning

for a small subset of the parameters.

Algorithms to perform Bayesian analysis of the finite mixture model, (1.1), first

assumed k to be known and were later extended to cover the k unknown case. For a

fixed k, one of the first works using MCMC is given in Diebolt and Robert (1994). To
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make inference for an unknown number of components, Richardson and Green (1997)

used reversible jump MCMC ideas (Green (1995)), and Stephens (2000a) used a birth-

death process. More recent work done by Nobile and Fearnside (2007) is based on a

variation of the model and the sampling technique requires that the parameters of the

model can be integrated out analytically. An interesting discussion and review on trans-

dimensional MCMC methods can be found in Green (2003) and Sisson (2005).

For the latter mixture model, (1.3), when the prior over G is taken as the Dirichlet

process (Ferguson (1973)), it is possible to derive a finite model by integrating out the

random distribution; see, for example, Escobar (1988), Escobar (1994) and Escobar and

West (1995). More recent approaches utilize the constructive definition of the Dirichlet

process, Sethuraman (1994), and work directly with the infinite number of mixtures. Ap-

propriate algorithms then need to be constructed so that the correct posterior is sampled

by knowing how many of the infinite variables need to be drawn. See Papaspiliopoulos

and Roberts (2008) for a retrospective sampler, and Walker (2007), and Kalli, Griffin,

and Walker (2011) for slice samplers.

1.1 Label switching

If the distributional assumptions about the components, in (1.1), are met and the number

of underlying clusters within the data is known, then to perform classification analysis

or in general inference for any characteristic of the components, the objective is to

find the posterior distribution which is approximated via MCMC methods. A problem

emerges when we note that the likelihood of (1.1) is invariant under permutation of the

indices: and there are k! permutations. Thus, under symmetric priors, the posterior will

inherit the likelihood’s invariance. As a result, in any MCMC algorithm, labels of the

components can permute multiple times between iterations of the sampler. This makes

ergodic averages to estimate characteristics of the components useless. This is known as

the label switching problem.
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Paradoxically, as noted by Celeux, Hurn, and Robert (2000), Frühwirth-Schnatter

(2001), Jasra, Holmes, and Stephens (2005) and Papastamoulis and Iliopoulos (2010),

among others, label switching is a prerequisite for MCMC convergence. If there is no

label switching, then it means that the sampler is not exploring all the modes of the

posterior distribution of (1.1). It should visit all the k! symmetric modes to cover the

whole posterior span. Notably, when the modes of the posterior are well separated,

the standard Gibbs sampler fails the label switching test (Jasra, Holmes, and Stephens

(2005) p. 55) as it becomes trapped in one of the symmetric modes. While this may be

meaningful for inference, it becomes impossible to justify convergence.

To address this problem, three alternative ideas have been suggested. The first

one keeps the standard Gibbs sampler and incorporates a Metropolis-Hastings move

that proposes a random permutation of the labels. See Frühwirth-Schnatter (2001) and

Papastamoulis and Iliopoulos (2010). The second approach is to use more sophisticated

and complex MCMC methods to improve mixing of the sampler, and specifically avoiding

the use of (1.2). See Celeux, Hurn, and Robert (2000) and Jasra, Holmes, and Stephens

(2005). The third idea is to use a trans-dimensional sampler, see Jasra, Holmes, and

Stephens (2005).

Initial attempts to “undo the label switching” were focused on imposing artificial

constraints on the parameter space via the prior distribution aiming to break the sym-

metry of the posterior distribution and force a unique labeling. See Diebolt and Robert

(1994) or Richardson and Green (1997). However, Stephens (1997) showed that these

constraints do not always solve the problem. Another idea, based on identifiability con-

straints over the parameter space, was proposed by Frühwirth-Schnatter (2001). The

main criticism for this method is the difficulty to select the adequate constraints among

all the possible choices.

More elaborate solutions aim to undo the label switching deterministically. This

means finding permutations of the parameters that minimize a loss function. See Celeux
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(1998), Stephens (1997), Nobile and Fearnside (2007) and Grün and Leisch (2009). Re-

cent methods combine similar ideas with the use of the maximum a posteriori (MAP)

estimator. See Martin, Mengersen, and Robert (2005) and Papastamoulis and Iliopoulos

(2010). Other approaches focus on devising a loss function invariant to permutations

of the parameters, see for example Celeux, Hurn, and Robert (2000), thus, solving the

label switching problem immediately. The drawback of this method is that it is compu-

tationally expensive and to define such a loss function is not always possible, see Celeux,

Hurn, and Robert (2000) and Jasra, Holmes, and Stephens (2005).

In this thesis we propose a solution to the label switching problem, Rodŕıguez and

Walker (2013), that lies in the meaning of the relationship between the allocation vari-

ables (1.2) and the observations. The key is to use this relationship to incorporate the

data directly within the loss function used to undo the label switching. From iteration to

iteration of an MCMC algorithm the labels of the clusters may change. But if the sam-

pler has converged, the clusters must remain roughly the same. We use this fundamental

fact to derive an easy and efficient solution to the label switching problem. To asses the

effect of the chosen MCMC strategy on the resulting inference, we compare results ob-

tained via the standard Gibbs sampler against those obtained via a trans-dimensional

MCMC algorithm.

1.2 Modelling of clusters

A common theme in (1.1) and (1.3), is the use of the normal distribution as the “bench-

mark” components or kernel distribution. This has been mainly for two reasons; it is

a well known distribution and when used with conjugate priors the resulting MCMC

simplifies. Under the finite mixture set-up, attempts to work with other parametric

components distributions are few: see, for example, Stephens (2000a), who used the

Student’s-t distributions, and Wiper, Rios-Insua, and Ruggeri (2001), who used the

gamma distribution. Within the Bayesian nonparametric literature, unimodal distribu-
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tions have been explored; see for example Lo (1984) and Brunner and Lo (1989), but

there has been no attempt to incorporate such a nonparametric unimodal distribution

as the components distribution in a mixture model.

If a density estimate is needed then the use of the normal distribution is perfectly

justified. We can approximate any distribution on the real line using an infinite mixture

of normals (Ferguson (1983)). However, for the modeling of clusters, it does have some

serious issues: if a cluster is skewed or heavy tailed then the normal distribution will be

inefficient and many may be needed to model a single cluster. To motivate our proposal

we can cite two important works in Bayesian mixture modeling:

Escobar and West (1995), when analyzed the galaxy data using mixtures of Dirichlet

processes and obtained unrealistic high posterior values for the number of components.

“The underlying assumption is that each galactic cluster is a normal com-

ponent. If the distribution of a galactic cluster is skewed or has a very light

or heavy tail, then we may use two or more normal components to fit one

galactic cluster component.”

Richardson and Green (1997), while analyzing three data sets using a finite mixture

of normals observed the same problem as Escobar and West

“In each case, the high overall number of components can be related in part

to the skewness of the data, two or three normals being sometimes needed to

fit one skewed component.”

Hence, to model a single cluster, two or possibly more normals are needed, so the number

of components does not coincide with the number of clusters; meaning that the number

of components needed to model the data via a mixture of normal distributions, has no

real interpretation.

In this thesis our aim is to ensure the number of clusters within the data coincides

with the estimate of the number of components, Rodŕıguez and Walker (2012). Our
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plan is to use a components distribution for which the only constraint is unimodality.

We employ this in a finite mixture model context, (1.1), where k is modeled explicitly.

With this objective, we introduce a new family of nonparametric unimodal distributions,

which has large support over the space of unimodal distributions. Hence, the model is a

finite mixture of k unimodal densities, each of which is modeled nonparametrically. In

short, therefore, we are defining a cluster as a set of observations which can be modeled

by a unimodal density. In the absence of further information beyond the observations,

this is the most reasonable working assumption for a cluster. The idea being that a

multimodal density would reasonably be assumed to contain more than one cluster.

The thesis is structured as follows:

Chapter 2: provides an outline of MCMC methods for finite mixtures. Emphasis is

given to the case for an unknown number of components, where the product space

model of Godsill (2001) is used to derive the reversible jump acceptance probability

for the finite mixture model (1.1). Under this setting, a complete summary of

Richardson and Green (1997) ideas is given.

Chapter 3: describes the properties of the Dirichlet process and provides an overview

of some MCMC methods to sample from the mixture of Dirichlet process model.

The aim of this chapter is to motivate the ideas rather than provide a detailed

account of theoretical results.

Chapter 4: delineates a new and efficient solution to the label switching problem: a

deterministic relabeling algorithm. First, the key ideas for a deterministic relabel-

ing algorithm are described and from it a solution to the label switching problem

is proposed. The new strategy is compared with other relabeling algorithms on

univariate and multivariate data examples.

Chapter 5: defines a new family of nonparametric unimodal distributions and a fi-

nite mixture of k of these unimodal distributions. Then, it describes an MCMC
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algorithm to sample from the posterior distribution of this finite mixture model:

known and unkown k cases are treated. Real and simulated data sets are analyzed

with the new model and compared with the analysis performed via the mixture of

normal distributions.

Appendix A: provides a background on the basic definitions and ideas of Markov

chains and the MCMC methods as used in this thesis.



Chapter 2

MCMC Methods for Finite

Mixtures

In this Chapter, MCMC methods to fit a finite mixture model are reviewed. Special

attention is given to the case when the number of components is unknown, hence we

formulate the model under this assumption. However, it is easier to deal with the

problem of a known number of components first, and then extend the sampler to include

the case for a moving number of components. This is standard procedure. For the finite

mixture of normals, Diebolt and Robert (1994) first devised the case for a fixed number

of components, now a very well known Gibbs sampler, and then later other authors used

this as a corner-stone to derive algorithms for normal distributions with an unknown

number of components; see for example Richardson and Green (1997) and Stephens

(2000b).

2.1 The model

The finite mixture model with k components, and k is assumed unknown, is written as

p(yi|w,θ, k) =

k∑
j=1

wjf(yi|θj), independently for i = 1, . . . , n, (2.1)

9
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and let θ = {θj}kj=1 and w = {wj}kj=1. For (2.1) to be a density, the weights, w, must

be non-negative and sum to one. A clever idea that simplifies many calculations when

working with (2.1) is to include the latent allocation variables: z = {zi}ni=1, such that

given zi, the component from which yi has been drawn is known, i.e.

p(yi|θ, zi) = f(yi|θzi). (2.2)

Note, a priori, each zi is drawn independently with distribution p(zi = j|w, k) =

wj , for j = 1, . . . , k. Integrating out zi, we return to (2.1), since

k∑
j=1

p(zi = j|w, k)p(yi|θ, zi = j) =
k∑
j=1

wjf(yi|θj).

Now let nj = #{i : zi = j}, so

p(z|w, k) ∝
n∏
i=1

wzi =

k∏
j=1

w
nj
j . (2.3)

This is the multinomial distribution, and it is well defined if nj = 0 for some j (see

Section 3.1.1 in Chapter 3).

Also, with the introduction of the latent variables (2.2), the likelihood of (2.1), can

be written as

p(y|θ, z) =
n∏
i=1

f(yi|θzi), (2.4)

where y = {yi}ni=1.

2.1.1 Hierarchical model and priors

In a Bayesian setting the unknowns k, w and θ are treated as random variables, so

to learn about them we specify prior beliefs via prior distributions: p(k|λ), p(w|δ) and

p(θ|γ) where λ, δ and γ are constants. Or to gain flexibility, additional hierarchical levels

can be added to λ, δ and γ. In our case, we will only include an extra hierarchical level

to γ: p(γ|ζ). For the latent variables z, the prior, (2.3), is specified indirectly. With
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these considerations it is possible to write a hierarchical representation of the model:

[k|λ] ∼ p(·|λ) and [γ|ζ] ∼ p(·|ζ),

[w|δ, k] ∼ p(·|δ, k),

[θj |γ, k] ∼ p(·|γ), j = 1, 2, . . . , k,

[zi|w, k] ∼
k∑
j=1

wjδj(·), i = 1, . . . , n,

[yi|θ, z] ∼ f(·|θzi), i = 1, . . . , n. (2.5)

Then, using Bayes’ Theorem, we update knowledge via the posterior distribution:

p(k, γ,θ,w, z|y) ∝ p(k, γ,θ,w, z,y)

= p(k|λ)p(γ|ζ)p(θ|γ, k)p(w|δ, k)p(z|w, k)p(y|θ, z). (2.6)

Note that some conditional independence has been assumed: from (2.2) we already had

p(y|θ, z,w, k) = p(y|θ, z) and now further p(θ|z,w, k) = p(θ|k) is included.

The prior for the number of groups, p(k|λ), is taken as discrete uniform, if we want

to be non-informative, or truncated Poisson if there exists some prior knowledge about

the number of groups. The prior for the weights is often taken as a symmetric Dirichlet

distribution: p(w|δ, k) = Dir(w|δ, . . . , δ). We will use this specification throughout for

the weights of the finite mixture model. The θ = {θj}kj=1, are assumed to be drawn

independently, i.e.

p(θ|γ, k) =
k∏
j=1

p(θj |γ).

Finally, for p(θj |γ) and p(γ|ζ) conjugate priors are usually assigned.

2.2 Known number of components

When k is known, it is straightforward to devise a Gibbs sampler (see Algorithm A.4.1

in Appendix A) to sample from the posterior distribution (2.6). Note from (2.6) that
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the full joint conditionals are proportional to

p(z|w, k)p(y|θ, z) =

n∏
i=1

wzif(yi|θzi) =

k∏
j=1

wnjj ∏
{i:zi=j}

f(yi|θj)

 . (2.7)

A description of this strategy is displayed in Algorithm 2.1 (note that ntj = #{i : zti = j}).

Algorithm 2.1 Gibbs sampler for finite mixtures

Require: Given (wt,θt, zt, γt), simulate (wt+1,θt+1, zt+1, γt+1) via

1: for j = 1 to k do

2: θt+1
j ∼ p(θj |zt, γt,y) ∝ p(θj |γt)

∏
{i:zti=j}

f(yi|θj).

3: end for

4: wt+1 ∼ p(w|δ, zt, k) ∝ p(w|δ, k)
k∏
j=1

w
ntj
j ∝ Dir(w|nt1 + δ, . . . , ntk + δ).

5: for i = 1 to n do

6: zt+1
i ∼ p(zi = j|wt+1,θt+1, k,y) =

wt+1
j f(yi|θt+1

j )∑k
j=1w

t+1
j f(yi|θt+1

j )
(j = 1, . . . , k).

7: end for

8: γt+1 ∼ p(γ|ζ,θt+1, k) ∝ p(γ|ζ)
k∏
j=1

p(θt+1
j |γ).

Algorithm 2.1 was first used by Diebolt and Robert (1994), however additional hier-

archical levels have been included (motivated by Richardson and Green (1997)).

2.2.1 Poisson mixtures

We can easily find the full conditionals for the case when the Poisson distribution is taken

as the components distribution: f(yi|θj) = Po(yi|θj). Here independent gamma priors

for the means can be assumed: γ = (α, β) ⇒ p(θj |γ) = Ga(θj |α, β), then to sample

θt+1
j ∼ p(θj |zt, γt,y), in Algorithm 2.1, we draw

θt+1
j = p(θj |α, β, zt,y) ∼ Ga

α+
∑
{i:zti=j}

yi, β + ntj

 .

We will not assume further hierarchical structures for γ = (α, β).
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2.2.2 Univariate normal mixtures

If the normal distribution is taken as the components distribution: θj = (µj , τ
−1
j ), hence

f(yi|θj) = N(yi|µj , τ−1
j ), with τ−1

j = σ2
j .

For this model we will differentiate between the known and unknown k case:

� Known k. The usual choices of priors are independent normal and gamma distri-

butions for the means and precisions, respectively. Hence

p(θj |γ) = N(µj |µ0, κ
−1) Ga(τj |α, β),

where γ = (µ0, κ
−1, α, β) (the Ga(·|α, β) is always parametrized such that the mean

is given by α/β). In this case an additional hierarchical level for β is assumed, thus

p(β|g, h) = Ga(β|g, h). With this consideration, to sample θt+1
j ∼ p(θj |zt, γt,y)

and γt+1 ∼ p(γ|ζ,θt+1, k,y) in Algorithm 2.1, we generate

µt+1
j ∼ p(µj |µ0, κ, τ

t
j , z

t,y) = N


τ tj

∑
{i:zti=j}

yi + κµ0

τ tjn
t
j + κ

,
1

τ tjn
t
j + κ

 ,

τ t+1
j ∼ p(τj |α, µt+1

j , βt, zt,y) = Ga

α+
ntj
2
, βt +

1

2

∑
{i:zti=j}

(
yi − µt+1

j

)2

 ,

βt+1 ∼ p(β|g, h, α, τ t+1, k,y) = Ga

g + kα, h+

k∑
j=1

τ t+1
j

 .

� Unknown k. To derive the trans-dimensional case as in Richardson and Green

(1997) we change the prior for the means, i.e.

p(µ1, . . . , µk|µ0, κ
−1, k) = k!

k∏
j=1

N(µj |µ0, κ
−1)1{µ1 < . . . < µk} (2.8)

the order statistics of k normal distributions. With this change, the full conditional

for µt+1
j is a truncated normal distribution, in form

µt+1
j ∼ p(µj |µ0, κ, τ

t
j , z

t,y) = N


τ tj

∑
{i:zt

i=j}

yi + κµ0

τ tjn
t
j + κ

,
1

τ tjn
t
j + κ

1{µt+1
j−1 < µj < µt

j+1

}
,
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where µt+1
0 = −∞ and µtk+1 =∞.

We stress that (2.8) is not to provide an identifiability constraint and break the

symmetry of the likelihood of (2.1). It has been shown, Stephens (2000b), that

these constraints do not solve the label switching problem. The purpose of this

prior is to impose the order needed on the location parameters to construct the

invertible transformation as in Richardson and Green (1997). Their transformation

takes µj with µj−1 < µj < µj+1 and splits it into µj1 and µj2 such that µj−1 <

µj1 < µj2 < µj+1. For the inverse transformation we need to select µj1 and µj2

and combine them into µj , preserving the same order as in the split. See Section

2.3.2. All the other specifications remain as in the fixed k case.

Remark 2.1. The hyper-prior for β gives more flexibility to model the size of the

components variance and becomes very important when making inference for the number

of groups: the estimated number of components is related to the prior information on the

variances σ2
j . When performing a sensitivity analysis Richardson and Green (1997) noted

that the results of the model with the additional hierarchical level were more robust to

prior assumptions than to those of the model without the increased flexibility. However,

for the known k case is often also included. Many authors have used this model as a

benchmark for their own proposals, see for example Stephens (2000a) or Papastamoulis

and Iliopoulos (2010).

2.2.3 Multivariate normal mixtures

Later on in the thesis we will work using examples with mixtures of bivariate normals.

For completeness, we include the multivariate extension of the Gibbs sampler for the uni-

variate case. Here θj = (µj ,Σj) thus f(yi|θj) = Np(yi|µj ,Σj), and the usual choices of

priors are independent multivariate normal and Wishart (replaces the gamma as the mul-

tivariate version of a conjugate prior) distributions for the means and variance-covariance
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matrices, respectively. Hence,

p(θj |γ) = Np

(
µj |µ0, κ

−1
)

Wip

(
Σ−1
j |2α, (2β)−1

)
.

The equivalent hyper-prior for β, to the one of the univariate mixture of normals, becomes

p(β|g, h) = Wip
(
β|2g, (2h)−1

)
. Thus to sample from the full conditionals, in Algorithm

2.1, we draw

µt+1
j ∼ p(µj |µ0, κ,Σ

t
j , z

t,y) = Np

Bt
j

Σt
j
−1

∑
{i:zti=j}

yi + κµ0

 ,Bt
j

 ,

Σt+1
j
−1 ∼ p(Σ−1

j |α, µ
t+1
j , βt, zt,y) = Wip

(
2α+ ntj , C

t
j

)
,

βt+1 ∼ p(β|g, h, α,Σt+1
j , k,y) = Wip

2g + 2kα,

2h+

k∑
j=1

Σt+1
j
−1


−1 ,

where Bt
j =

(
ntjΣ

t
j
−1

+ κ
)−1

and Ctj =

2βt +
∑
{i:zti=j}

(yi − µt+1
j )(yi − µt+1

j )T


−1

.

This multivariate mixture model was used by Stephens (1997) when demonstrating

his relabeling algorithm, later on in the thesis we will use this model with the same

purpose.

2.2.4 Convergence

If the full conditionals in Algorithm 2.1 are positive, then the Markov chain generated

via the standard Gibbs sampler is ergodic; see Appendix A. This is the case for the

examples that we have presented. Thus, we can approximate posterior means of relevant

quantities with ergodic averages of sample paths of the chain. For example, we can

approximate

p(y∗|y, k) =

∫
Θ

∫
W

p(y∗,w,θ|y, k)dwdθ, (2.9)

=

∫
Θ

∫
W

p(y∗|w,θ, k)p(w,θ|y, k)dwdθ,

=

∫
Θ

∫
W


k∑

j=1

wjf(y∗|θj)

 p(w,θ|y, k)dwdθ,

≈ 1

N

N∑
t=1


k∑

j=1

wt
jf(y∗|θtj)

 (for N large enough),
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where (wt,θt) for t = 1, . . . , N are generated via Algorithm 2.1 (N is the number of

iterations after a burn in period).

Note that in (2.9) y∗ and y are conditionally independent. Hence, under this con-

dition, we can generate a grid of points, y∗1, . . . , y
∗
m, over the range of y, to produce a

density estimate via (y∗l , p(y
∗
l |y, k)) for l = 1, . . . ,m.

Remark 2.2. The density estimate (2.9) is invariant to permutations of the mixture

components’, hence it is not affected by the label switching phenomenon. However,

to approximate posterior means relevant to specific components of the mixture, e.g.

classification probabilities. The label switching problem must be addressed first, see

Chapter 4 for a complete description of the label switching problem.

2.2.5 Additional comments

The standard Gibbs sampler for finite mixtures was first described by Diebolt and Robert

(1994) and since then, there have been constant concerns about the “practical conver-

gence properties” of the chain, see for example Robert (1996), Robert and Casella (2004)

and Martin, Mengersen, and Robert (2005). The following quote of Casella, Robert, and

Wells (2004) summarizes these views adequately:

Unfortunately, the practical implementation of this algorithm might run into

serious problems because of the phenomenon of the “absorbing component”.

When only a small number of observations are allocated to a given component

j0, then the following probabilities are quite small:

1. The probability of allocating new observations to the component j0.

2. The probability of reallocating, to another component, observations al-

ready allocated to j0.

Even though the Gibbs chain (zt,θt) is irreducible, the practical setting is one

of an almost-absorbing state which is called a trapping state as it may require
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an enormous number of iterations to escape from this state. In extreme cases,

the probability of escape is below the minimal precision of the computer and

the trapping state is truly absorbing, due to computer “rounding errors”. . . .

. . . . . . This is also shown in the lack of proper exploration of the posterior

surface, since the Gibbs sampler often exhibits a lack of label switching,

that is, the recovery of the invariance of the posterior distribution under

permutations of the indices.

To improve mixing, dealing with trapping states and the problem of label switching,

alternative MCMC strategies to fit a finite mixture model with k components have been

proposed: Metropolis-Hastings or simulated tempering, see for example Celeux, Hurn,

and Robert (2000) and Jasra, Holmes, and Stephens (2005). Note that these samplers

avoid the use of the latent allocations (2.2). Another alternative, to deal with these

problems, is to use a trans-dimensional sampler and then extract the MCMC output for

a given k, see Jasra, Holmes, and Stephens (2005). This is our preferred option, and

agrees with our purpose: in the next section we build the case for an unknown number of

components. However, later on in the thesis we will compare posterior mean estimates

calculated with the MCMC output generated via the standard Gibbs sampler against

those calculated from the MCMC output of a trans-dimensional sampler. To solve the

label switching problem we will use a relabeling algorithm; see Chapter 4.

2.3 Unknown number of components

There are two main alternatives to make inference for the number of components of a

finite mixture. We can use reversible jump ideas (Green (1995)) as in Richardson and

Green (1997), or a continuous time birth-and-death processes as in Stephens (2000a).

Cappé, Robert, and Rydén (2003) investigated the similarity between these methodolo-

gies and concluded that the birth-and-death sampler is slower than its reversible jump
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counterpart, but its advantage is that it is able to move to unlikely places of the param-

eter space.

In our case, we will follow reversible jump ideas closely. However, we see reversible

jump as a particular case of the product space model discussed by Godsill (2001). From

this perspective, the acceptance probability for the reversible jump methodology is de-

duced directly as a standard Metropolis-Hastings move. The advantage of this alterna-

tive deduction is that we can understand better how to derive, use and modify trans-

dimensional samplers for non-trivial problems e.g. mixture models. Godsill extended

the Carlin and Chib (1995) ideas by introducing a general product space model that

comprises many trans-dimensional algorithms, including the reversible jump methodol-

ogy of Green (1995); see Green (2003). First, a description of the product space model

is given and then the acceptance probability for the Metropolis-Hastings step in the

product space, is deduced.

2.3.1 Product space model

We suppose that our observations have been generated by a model within a countable

collection of candidate models {Mk, k ∈ K} where K is a set of candidate model indices.

ModelMk has a vector or matrix φ(k) of unknown parameters. Each parameter φ(k) has

support Φ(k) and for models with different indices the dimension of the parameters may

vary. Our goal would be to choose the best model for the data within all the possible

models. The solution given within the Bayesian setting is to calculate the posterior

distribution p(φ(k), k|y). To this end, we could follow the ideas of Green (1995). In this

setting, for a given index k; (k, φ(k)) ∈
(
{k} × Φ(k)

)
and in general, for a moving model

index k,

(k, φ(k)) ∈
⋃
k∈K

(
{k} × Φ(k)

)
. (2.10)

Here the idea is to devise a Markov chain with invariant distribution p(φ(k), k|y), that

traverses the space (2.10), generating proposals q(k′, φ(k′)|k, φ(k)) to jump through sub-
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spaces of different dimensions, which are then accepted with probability αk,k′ . To ensure

convergence of the chain, to the correct invariant probability distribution, the proposals

must satisfy the detailed balance condition, see Appendix A. Once the overall detailed

balance is written, the acceptance probability for the reversible jump methodology is

worked out. This is rather an obscure procedure. Hence, instead of considering the

finite dimensional parameters φ(k), we consider

φ = (φ(1), φ(2), φ(3), . . .),

so we do not think of jumps between sub-spaces of different dimensions. We define

a probability distribution over the entire product space of candidate models and their

parameters, so that

(k, φ) ∈ K ×
⊗
k∈K

Φ(k). (2.11)

Thus, in the product space model, we change (2.10) for (2.11). The likelihood and

the prior structure are defined in a corresponding way as follows; for a particular k

the likelihood depends only on the corresponding vector of parameters φ(k), that is

p(y|φ, k) = p(y|φ(k), k). The model will be completed by the prior p(φ|k) and the prior

p(k). Then the full posterior distribution of the product space model can be expressed

as

p(φ, k|y) =
p(y|φ, k)p(φ|k)p(k)

p(y)

=
p(y|φ(k), k)p(φ(k)|k)p(φ(−k)|φ(k), k)p(k)

p(y)

= p(φ(k), k|y)p(φ(−k)|φ(k), k) (2.12)

where φ(−k) denotes the model parameters in Φ(j) for all j 6= k. The specification of the

product space model for a given k is completed by the usual hierarchical structure for

the models in Φ(k) and by p(φ(−k)|φ(k), k) which would be the “priors” or pseudo-priors

(this term was first used by Carlin and Chib (1995)) for the parameters that are not used

by models in Φ(k). We could assign any proper distribution to p(φ(−k)|φ(k), k), however,
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when reversible jump is derived from the product space model, the pseudo-priors become

just a conceptual step. Now, if from (2.12), we integrate out φ(j) for all j 6= k we obtain

p(φ(k), k|y), which is the target distribution.

2.3.1.1 Product space Metropolis-Hastings

Godsill (2001) showed that reversible jump is a special case of a Metropolis-Hastings in

the product space. To do this, he obtained the reversible jump’s acceptance probability

to update a Markov chain at a state (k, φ) to a new state (k′, φ′) imposing the proposal

q(φ′, k′|φ, k) = q1(k′|k)q2(φ′(k
′)|φ(k))p(φ′(−k

′)|φ′(k′), k′), (2.13)

where q1(k′|k) is a proposal to move the model index from k to k′ and q2(φ′(k
′)|φ(k)) is

a proposal to move the parameters from the model indexed with k to one indexed with

k′. Once (2.13) is set and following the product space model (2.12), it is easy to see that

(see Section A.4.2 in Appendix A)

αk,k′(φ
(k), φ′(k

′)) = min

{
1,
p(φ′, k′|y)q(φ, k|φ′, k′)
p(φ, k|y)q(φ′, k′|φ, k)

}
= min

{
1,

p(φ′, k′|y)q1(k|k′)q2(φ(k)|φ′(k′))p(φ(−k)|φ(k), k)

p(φ, k|y)q1(k′|k)q2(φ′(k′)|φ(k))p(φ′(−k′)|φ′(k′), k′)

}

= min

{
1,
p(φ′(k

′), k′|y)q1(k|k′)q2(φ(k)|φ′(k′))
p(φ(k), k|y)q1(k′|k)q2(φ′(k′)|φ(k))

}
(2.14)

because in expression (2.14)

p(φ′, k′|y) = p(φ(k′), k′|y)p(φ(−k′)|φ(k′), k′)

p(φ, k|y) = p(φ(k), k|y)p(φ(−k)|φ(k), k)

hence the therms

p(φ(−k)|φ(k), k) and p(φ′(−k
′)|φ′(k′), k′)

are canceled out. But this acceptance probability is rather general. To deduce the most

convenient expression for the reversible jump methodology from (2.14), we assume that
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the dimension of φ(k) is nk and the dimension of φ′(k
′) is nk′ with nk′ > nk. Then, the

key idea is to achieve the so called “dimension matching” between φ(k) and φ′(k
′). To

this end, we generate a vector or matrix u with distribution q2(u) independent of φ(k)

such that the dimension of (φ(k),u) is nk′ (the idea of Green (1995)). Then, we devise a

function T such that

T (φ(k),u) = φ′(k
′) and T−1(φ′(k

′)) = (φ(k),u). (2.15)

Here, to apply the Change of Variable Theorem (CHVT), T must be a bijection and T

and T−1 must be differentiable.

Then let q2φ(k),u(·|·), q2φ(k)(·|·) denote the joint conditional distributions of (φ(k),u),

φ(k), respectively, and q2u(·) the joint marginal distribution for u. The CHVT can be

used to write

q2(φ′(k
′)|φ(k)) = q2φ(k),u(T−1(φ′(k

′))|φ(k))

∣∣∣∣∂T−1(φ′(k
′))

∂φ′(k′)

∣∣∣∣,
= q2φ(k),u(φ(k),u|φ(k))

∣∣∣∣∂T−1(φ′(k
′))

∂φ′(k′)

∣∣∣∣,
= q2φ(k)(φ

(k)|φ(k))q2u(u|φ(k))

∣∣∣∣∂T−1(φ′(k
′))

∂φ′(k′)

∣∣∣∣,
= q2u(u)

∣∣∣∣∂T−1(φ′(k
′))

∂φ′(k′)

∣∣∣∣, (2.16)

because u is independent of φ(k), and q2φ(k)(φ
(k)|φ(k)) = 1. On the other hand q2(φ(k)|φ′(k′))

is always 1 because in (2.15) we are assuming that a function such that ϕ(φ′(k
′)) = φ(k)

exists.

Then, from (2.16), (2.14) becomes

αk,k′(φ
(k), φ′(k

′)) = min

{
1,

p(φ′(k
′), k′|y)q1(k|k′)

p(φ(k), k|y)q1(k′|k)q2u(u)

∣∣∣∣∂T (φ(k),u)

∂(φ(k),u)

∣∣∣∣
}

(2.17)

because of the Inverse Function Theorem (see for example Rudin (1976)).

Equation (2.17) is usually obtained following reversible jump ideas (see Green (1995),

expression (8)). However, the product space formulation is a “standard” Metropolis-

Hastings.
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2.3.1.2 Product space Metropolis-Hastings for mixtures

For finite mixture models, with an unknown number of components, we need to generate

a Markov chain with invariant probability distribution

p(φ(k), τ (k), k|y) ∝ p(y|φ(k), τ (k), k)p(φ(k), τ (k)|k)p(k) (2.18)

where the (τ (k)) are the discrete latent allocation variables of the model with k compo-

nents, and the (φ(k)) are the continuous parameters of the model. To obtain the accep-

tance probability to update the chain from state (φ(k), τ (k)) to a new state (φ′(k
′), τ ′(k

′)),

there is no need to go back to the product space model, we just rewrite the acceptance

probability (2.14) as

αk,k′((φ
(k), τ (k)), (φ′(k

′), τ ′(k
′))) = min

{
1,
πk′

πk

}
(2.19)

with

πk′

πk
=
p(φ′(k

′), τ ′(k
′), k′|y)q1(k|k′)q2(φ(k), τ (k)|φ′(k′), τ ′(k′))

p(φ(k), τ (k), k|y)q1(k′|k)q2(φ′(k′), τ ′(k′)|φ(k), τ (k))
.

In our case, the proposals for the continuous variables of the model are going to be

independent of the proposed allocations, but for the allocations, the proposal does depend

on the proposed continuous parameters. Thus,

q2(φ(k), τ (k)|φ′(k′), τ ′(k′)) = q2(φ(k)|φ′(k′))q2(τ (k)|φ′(k′), τ ′(k′))

so under this formulation we can use again (2.16), to obtain an applied version of (2.19),

πk′

πk
=

p(φ′(k
′), τ ′(k

′), k′|y)q1(k|k′)
p(φ(k), τ (k), k|y)q1(k′|k)q2u(u)

∣∣∣∣∂T (φ(k),u)

∂(φ(k),u)

∣∣∣∣q2(τ (k)|φ′(k′), τ ′(k′))
q2(τ ′(k′)|φ(k), τ (k))

.

Under the product space model, (2.19) is a straightforward consequence of (2.17).
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2.3.2 Univariate normal mixtures (Richardson and Green (1997))

We will use the mixture of univariate normal distributions as our benchmark model, see

Section 2.2.2. First, let us identify the variables according to (2.19):

φ(k) =
(
w(k),µ(k),σ2(k)

)
τ (k) = z(k)

where w(k) = {wj}kj=1, µ(k) = {µj}kj=1 and σ2(k)
= {σ2

j}kj=1. Note that β does not

depend on the number of components of the mixture.

The strategy, transformations and Jacobian to calculate (2.19) can be found in

Richardson and Green (1997). But as we will use some of their ideas for our own model,

we give a detailed description.

The Markov chain is constructed via a hybrid strategy (see Appendix A, Section

A.4.4), we will have the following moves:

1. For a fixed k, a Gibbs kernel is used; this move was described in Section 2.2.2

(ordering the means).

2. Split-combine move; this move is a mixture of two Metropolis-Hastings kernels,

both attempting to change the number of components of the mixture.

3. Birth and death of empty components; this move again is a mixture of two Metropolis-

Hastings kernels, both attempting to change the number of components of the

mixture.

4. Once the birth and death move has been attempted we return to the first step,

hence forming cycle. This is repeated until the sampler has converged.

Split-combine: in the split, one component, let us say component j, is chosen ran-

domly from {1, . . . , k}, and split into two consecutive components, let us say components

j1 < j2. The aim is to preserve the order of the means. In the combine, this is exactly
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the “inverse move”, two consecutive components, j1 < j2, are selected randomly from

{1, . . . , k + 1} and combined into one component, j. The number of components is al-

ways within the finite set {1, 2, . . . , kmax}. The integer kmax depends on the prior for

k, e.g. the prior for k could be discrete uniform over the range {1, 2, . . . , kmax} or a

truncated Poisson within the same range. Let bk and dk be the probabilities of propos-

ing the split or combine move respectively. These are usually taken as bk = dk = 1
2 for

k = 2, 3, . . . , kmax − 1 and b1 = dkmax = 1 where bk + dk = 1 for k = 1, . . . , kmax.

The first step is to make a random choice between to attempt the move from a

mixture with k components to one with k + 1, or from a mixture with k components

to one with k − 1 components. This choice is made with probabilities bk and dk as

above. For this description we assume that we are attempting to move a mixture of k

components to one with k+ 1 components, thus in (2.19) we take k′ = k+ 1. Under this

assumption, the proposals q1(k + 1|k) and q1(k|k + 1) are already set and given by

� q1(k + 1|k) = bk/k: with a mixture of k components, the probability of proposing

the split move, times the probability of choosing the component j.

� q1(k|k + 1) = dk+1/k: with a mixture of k + 1 components, the probability of

proposing the combine move, times the probability of choosing two consecutive

components j1 < j2.

Then, the ratio to update the model index is given by

q1(k|k + 1)

q1(k + 1|k)
=
dk+1

bk
for k = 1, 2, . . . , kmax. (2.20)

We need to devise proposals for the continuous and discrete variables, the proposals for

the continuous variables are devised first.

For the split, generate u = (u1, u2, u3), via

u1 ∼ beta(2, 2), u2 ∼ beta(2, 2), u3 ∼ beta(1, 1)
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and then calculate

wj1 = u1wj ↔ wj2 = (1− u1)wj

µj1 = µj −
u2

√
σ2
ju1(1− u1)

u1
↔ µj2 = µj +

u2

√
σ2
ju1(1− u1)

1− u1

σ2
j1 = u3(1− u2

2)σ2
j

1

u1
↔ σ2

j2 = (1− u3)(1− u2
2)σ2

j
1

1− u1
.

The location parameters must satisfy µj−1 < µj1 and µj2 < µj+1 (µ0 = −∞ and µk+1 =

∞) if not, the move is rejected immediately.

The combine is derived directly, we work out the variables from the split to obtain

wj = wj1 + wj2 ↔ u1 =
wj1

wj1 + wj2

µj = (wj1µj1 + wj2µj2)/wj ↔ u2 =

√
wj1wj2(µj2 − µj1)√

wj1wj2(µj2 − µj1)2 + wj(wj1σ
2
j1

+ wj2σ
2
j2

)

σ2
j =

wj1wj2(µj2 − µj1)2

w2
ju

2
2

↔ u3 =
wj1σ

2
j1

wj1σ
2
j1

+ wj2σ
2
j2

.

Remark 2.3. These are the transformations mentioned in (2.15), the proposals for the

split are generated by T and for the combine by T−1. For this particular case (i.e.

univariate normal mixtures), the idea is to try to match the first and second moments of

the new components to those of the two that it replaces. This idea just gives an insight

for the combine, but obtaining the transformations for the variables u = (u1, u2, u3)

is completely a matter of trial and error. Defining the transformation T for nontrivial

problems can be really challenging.

Remark 2.4. These transformations have been designed for the variance, σ2
j , while the

model was devised for the precision, τj . Hence, when calculating (2.19) the change of

variable σ2
j =

1

τj
∼ Inv-Ga(σ2

j |α, β) must be considered.

It is now possible to calculate the Jacobian in expression (2.19), this is given by∣∣∣∣∂T (φ(k),u)

∂(φ(k),u)

∣∣∣∣ =
wj(1− u2)σ3

j

(u1(1− u1))
3
2

. (2.21)



Chapter 2. MCMC Methods for Finite Mixtures 26

Expression (2.21) is not the same as the one displayed in Richardson and Green (1997),

but is easy to show that both expressions are equivalent.

The proposals for the (discrete) allocation variables are as follows: generate a vector

s = {si}ni=1 such that si = zi for i = 1, . . . , n. For the split, first, all the observations such

that si = j∗ with j∗ larger than j are re-allocated to si = j∗+1. Second, the observations

such that si = j must be re-allocated randomly to component j1 or component j2, with

the following probabilities

pi,l =
wjlN(yi|µjl , σ2

jl
)

wj1N(yi|µj1 , σ2
j1

) + wj2N(yi|µj2 , σ2
j2

)
, (2.22)

for l = 1, 2 and for all i such that zi = j.

With s already re-allocated, and using the probabilities (2.22), we calculate the

probability for the proposal of the discrete variables, this is given by

p(τ (k+1)|φ(k), τ (k)) =
∏

{i:zi=j}

pi,si . (2.23)

For the combine; we re-allocate the si = j∗ bigger than or equal to j2 into j∗ − 1. This

is a deterministic move, thus the probability for the proposal of the discrete variables in

the combine is

p(τ (k)|φ(k+1), τ (k+1)) = 1. (2.24)

Then, in (2.19) we substitute the values of (2.23) and (2.24). Note that Richardson and

Green named (2.23) as Palloc. From the product space derivation it easy to see why and

from where Palloc appears, on the other hand, from the reversible jump perspective this

is rather obscure.
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To finish the specification of (2.19) we only need to calculate the ratio

p(φ′(k
′), τ ′(k

′), k′|y)

p(φ(k), τ (k), k|y)q2u(u)
=

∏
i∈S1

⋃
S2

N(yi|µsi , σ2
si)∏

i∈Z
N(yi|µj , σ2

j )

p(k + 1)

p(k)

w
δ−1+nj1
j1

w
δ−1+nj2
j2

w
δ−1+nj
j B(δ, kδ)

× (k + 1)

√
κ

2π
e−

κ
2 [(µj1−µ0)2+(µj2−µ0)2−(µj−µ0)2]

× βα

Γ(α)

(
σ2
j1
σ2
j2

σ2
j

)−α−1

e
−β(σ−2

j1
+σ−2

j2
−σ−2

j )

× {g2,2(u1)g2,2(u2)g1,1(u3)}−1 (2.25)

with ga,b(·) the beta density function with parameters a, b and where S1 = {i : si = j1},

S2 = {si = j2} and Z = {i : zi = j}, hence nj1 = #S1, nj2 = #S2 and nj = #Z.

To attempt the move from a mixture of k components to one of k − 1 components

we use the acceptance probability

αk,k−1((φ(k), τ (k)), (φ′(k−1), τ ′(k−1))) = min

{
1,

(
πk
πk−1

)−1
}
, (2.26)

instead of (2.19), thus the previous description is still valid.

Birth and death of empty components: For the birth, a new empty component is

generated. For the death, a random choice is made between any existing empty compo-

nents and the chosen component is deleted. An empty component is a component who

has no observations assigned to it: the number of empty components, for a mixture of k

components, will be denoted as k0.

As with the split and combine move, we need to make a random choice between

proposing the move from a mixture with k components to one with k+1 or to a mixture

with k − 1 components. This choice is made with probabilities bk and dk as before. We

again assume that we are attempting to move a mixture of k components to one with

k+ 1 components. Under this assumption, the proposals q1(k+ 1|k) and q1(k|k+ 1) are

given by

� q1(k + 1|k) = bk: with a mixture of k components, the probability of to attempt

the birth move.
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� q1(k|k + 1) = dk+1/(k0 + 1): with a mixture of k + 1 components, the probability

of to attempt the death move, times the probability of choosing one of the k0 + 1

empty components.

Then, the ratio to update the model index is given by

q1(k|k + 1)

q1(k + 1|k)
=

dk+1

bk(k0 + 1)
for k = 1, 2, . . . , kmax.

Since we are generating or deleting empty components, the allocation variables must not

be modified, then the ratio of proposals for the discrete variables in (2.19) is 1. Hence,

just proposals for the continuous variables are needed.

For the birth, a weight and parameters for the proposed new component are drawn

using

wj∗ ∼ beta(1, k), µj∗ ∼ N(µ0, κ
−1), σ2

j∗ ∼ Inv-Ga(α, β), (2.27)

and the existing weights are rescaled, so that all the weights sum to 1, i.e.

wj′ = wj(1− wj∗). (2.28)

For the death, between the existing empty components, an empty component is randomly

chosen and deleted. The remaining weights are rescaled to sum to 1, i.e. if j∗ is the

chosen empty component wj′ = wj/(1− wj∗).

Remark 2.5. In the birth, the new empty component must be accommodated so that

the order of the means is satisfied.

The latent allocations remain unchanged and the proposals (2.27) play the role of the

independent variable u = (wj∗ , µj∗ , σ
2
j∗), in (2.19), these two facts lead to a simplification

of the ratio:

p(φ′(k
′), τ ′(k

′), k′|y)

p(φ(k), τ (k), k|y)q2u(u)
=
p(k + 1)

p(k)
(k + 1)

wδ−1
j∗ (1− wj∗)n+kδ−k

B(kδ, δ)g1,k(wj∗)
.

Finally, to calculate the Jacobian, we need to consider (2.28) and
∑

j wj = 1, thus∣∣∣∣∂T (φ(k),u)

∂(φ(k),u)

∣∣∣∣ = (1− w∗j )k−1,
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see Richardson and Green (1998).

To attempt the move from a mixture of k components to one of k − 1, we use

again (2.26). This completes the specification of the trans-dimensional sampler to make

inference for the number of components for a finite mixture of univariate normals as

in Richardson and Green (1997). To make inference for the number of components for

mixtures of Poisson distributions or multivariate normal distributions, see Viallefont,

Richardson, and Green (2002) and Dellaportas and Papageorgiou (2006), respectively.

2.3.2.1 Prior specification

Later on in the thesis we will perform several comparisons using the mixtures of uni-

variate normal distributions as benchmark model, and we will follow Richardson and

Green (1997) ideas to fix the unspecified constants of the priors. Under this setting, it is

assumed that we do not have strong prior information on the mixture parameters. The

aim is to work under weak informative priors, and base the unspecified constants only

on the range of the data: the range of the data is given by R = y(n) − y(1). Although

k is considered to be unknown, our hierarchical model (2.6) admits the representation

p(k, γ,θ,w, z,y) ∝ p(k)p(γ,θ,w, z|k,y). Thus, the prior structure can be set in terms

of the known k model:

µ0 = y(1) +
R

2
, (2.29)

κ =
1

R2
, (2.30)

α = 2, (2.31)

g = 0.2, (2.32)

h =
100g

αR2
, (2.33)

δ = 1. (2.34)

The prior over µj , (2.29) and (2.30), reflects vague knowledge about the location of

the means, and the choice for the weights, (2.34), gives a uniform prior over the space

w1 + · · ·+wk = 1. However, the prior over τj = σ−2
j , (2.31)-(2.33), is more complicated

than this, as expressed in the remark 2.1. Here, following Richardson and Green (1997),
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we give a more comprehensive explanation.

First note that

p(σ−2
j ) = Ga(α, β)⇒ E

(
σ−2
j

)
=
α

β
, (2.35)

p(β) = Ga(g, h)⇒ E(β) =
g

h
, (2.36)

and the aim is to make the posterior of k less sensitive to the choice of β. Thus (2.36)

was introduced. Now, to devise the default prior, using (2.35) and (2.36), we relate

σj ∼=
√
β

α
∼=
√

g

hα
,

and finally the variance is “connected” with the range of the data:
√
g/(hα) = pR,

where (1/20 ≤ p ≤ 1/5). After a sensitivity study on the posterior of k, see pp. 747-748,

they chose p = 1/10, α = 2 and g = 0.2. Leading to (2.33), where α > 1 > g expresses

the belief that the variances are similar, without being informative about its absolute

size, see p. 735.

2.3.2.2 Convergence

We described a hybrid strategy, this is just a composition of several Markov kernels,

see Appendix A, Section A.4.4. For a given k, the space state of the chain is updated

via a Gibbs kernel, and to move k there are two mixtures of Metropolis-Hastings ker-

nels. Each kernel with invariant probability distribution p(φ(k), τ (k), k|y), see (2.18).

This guarantees the converge of the Markov chain to the correct invariant probability

distribution.

Remark 2.6. The Gibbs sampler kernel is not needed: the two mixtures of Metropolis-

Hastings kernels alone guarantee the convergence of the chain to the correct posterior

distribution, this has been noted before by Cappé, Robert, and Rydén (2003). Indeed,

theoretically, only one mixture of Metropolis-Hastings will be needed to ensure conver-

gence to the invariant probability distribution.
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It is difficult to asses Harris recurrence (see Section A.3), but irreducibility is easily

established: k can traverse the set {1, . . . , kmax}, by moving in steps of one at a time and

for a given k, all the parameters are updated via a Gibbs sampler, which is irreducible.

To establish aperiodicity, we need to show that if at time t the chain is at the state

(k, θ(k), τ (k)), and we define an arbitrarily small neighborhood of it, then at time t + 1

there is positive probability that the chain lies in that same neighborhood. But this is

true, since there is positive probability to reject the two moves that alter the number of

components of the mixture, and given k, the Gibbs sampler is irreducible.

Remark 2.7. Mixtures of Metropolis-Hastings combined with the Gibbs sampler for a

fixed k is an attempt to improve mixing.

Thus, to approximate relevant quantities by averages of sample paths of the chain,

we still can use the relaxed version of the Ergodic Theorem in Appendix A. For example,

we can approximate the posterior distribution for the number of components, i.e.

p(k = j|y) = E (1{k = j}|y) (2.37)

≈ 1

N

N∑
t=1

1{kt = j} (for N large enough),

for all j ∈ 1, . . . , kmax. To generate a predictive density estimate, we simply average over

different values of k, i.e.

p(y∗|y) ≈ 1

N

N∑
t=1


kt∑
j=1

wtjf(y∗|θtj)

 (for N large enough),

where (kt,wt,θt) for t = 1, . . . , N are generated via a hybrid strategy (N is the

number of iterations after a burn in period).

2.4 Additional comments

The analysis for the fixed k model can be carried out simply extracting the output for

a relevant k, from the trans-dimensional sampler. On this line, Richardson and Green
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(1997) and Stephens (2000a) observed that the moving k sampler can be used to improve

the analysis of the fixed k model. This is because the trans-dimensional sampler is able

to move around the modes of the posterior distribution of the fixed k model, via models

of lower or higher dimensions. Thus visiting the posterior modes of the fixed k model,

in a more efficient manner, i.e. taking less iterations to escape trapping states and in

general mixing better within k.

To ensure convergence of the trans-dimensional sampler we need to generate larger

number of iterations than with its fixed dimension version. This is because the state

space of the chain for the model with an unknown k is larger. For the trans-dimensional

sampler, for mixtures of univariate normals, we usually generate 1,000,000 of iterations

and discard the first 200,000 as a burn in period. While for the Gibbs sampler 60,000

iterations are generated and then the first 30,000 are taken as a burn in period.



Chapter 3

MCMC Methods for Infinite

Mixtures

This Chapter reviews MCMC methods for fitting Bayesian nonparametric mixture mod-

els that are based on the Dirichlet process. In general, nonparametric methods are more

complicated to understand, construct and use than their parametric counterparts so our

aim in this Chapter is to motivate the ideas rather than present a detailed technical and

comprehensive summary of results. We start with an outline of the Dirichlet process.

3.1 The Dirichlet process

The Dirichlet process can be motivated from its closest parametric relative: the multi-

nomial model.

3.1.1 The multinomial model

The multinomial model specifies an arbitrary probability over the space of partitions of

n objects into k clusters, and can be derived by defining an arbitrary distribution over

the k clusters and then grouping the objects according to this distribution. Concisely,

let zi ∈ {1, . . . , k} be a discrete random variable with probabilities p(zi = j|w) = wj ,

33
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where w = {wj}kj=1, wj ≥ 0 for j = 1, . . . , k and
∑k

j=1wj = 1. Thus, zi is a variable that

indicates in which of the k clusters the object i belongs. For an i. i.d. sample z = {zi}ni=1,

we have that

p(z|w) ∝
k∏
j=1

wj
nj , (3.1)

where nj = #{i : zi = j} and n =
∑k

j=1 nj (hence nj ∈ {0, 1, 2, . . .}).

To obtain the proportionality constant we need to account for all possible permu-

tations in which the n elements of z can be assigned to k different clusters of sizes

n = {nj}kj=1; hence

p(z|w) =

(
n

n1 · · ·nk

) k∏
j=1

wj
nj , (3.2)

where (3.2) is the multinomial distribution and the proportionality constant is known as

the multinomial coefficient.

Under the grouping operation the objects can be reduced to counts over the different

clusters and the distribution of counts n, over the k clusters, is again (3.2). Thus the

random partitions z and the counts n follow the same distribution.

The multinomial distribution is a generalization of the binomial distribution and it is

very useful to model experiments that can result in one of k possible outcomes. The most

convenient prior for w is a conjugate prior, which in this case is the Dirichlet distribution

(Dir(w|α1, . . . , αk)):

p(w|α1, . . . , αk) =
Γ(
∑k

j=1 αj)∏k
j=1 Γ(αj)

k∏
j=1

w
αj−1
j . (3.3)

Observe that the mean of each weight is given by

E(wj) =
αj∑k
j=1 αj

, (3.4)

and also note the beta distribution is a Dirichlet distribution when k = 2 (the beta

distribution is a conjugate prior for the binomial distribution).
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With this choice of prior, the posterior for the weights is given by

p(w|z) ∝ p(z|w)p(w|α1, . . . , αk) ∝
k∏
j=1

w
αj+nj−1
j

∝ p(w|α1 + n1, . . . , αk + nk)

⇒ w|z ∼ Dir(w|α1 + n1, . . . , αk + nk), (3.5)

and the predictive for zn+1 is easily calculated, if we assume that zn+1 and z are condi-

tionally independent given w. Hence

p(zn+1 = j|z) =

∫
p(zn+1 = j|w)p(w|z)dw

=

∫
wjp(w|z)dw

= E(wj |z)

=
αj + nj

n+
∑k

j=1 αj
(3.6)

where (3.6) is consequence of (3.5) and (3.4).

The latent variables (2.3), of the finite mixture model, have the same meaning and

are indeed multinomial random variables. Also, note that expression (3.5) was used to

update the weights of the finite mixture model via a Gibbs sampler.

Remark 3.1. Since w is an arbitrary probability distribution over {1, . . . , k}, then

we can say that the Dirichlet distribution is a convenient prior distribution over the

set of finite probability distributions. With this in mind, Ferguson (1973) introduced

the Dirichlet process, P, which is a prior distribution over the space of probability

distributions: if G is an arbitrary distribution over some very general sample space (it

does not have to be finite), the Dirichlet process is used as a convenient prior over G

(G ∼P), i.e. it is a conjugate prior and has large support over the space of distribution

functions.
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3.1.2 Definition and properties

Formally, the Dirichlet process, P, is defined via finite-dimensional Dirichlet distribu-

tions.

Definition 3.1.1. Let G0 be a distribution over Ω and c be a positive real number.

We say that G ∼ P where P is the Dirichlet process measure on (Ω,C ) with base

distribution G0 and concentration parameter c if

(G(A1), . . . , G(Am)) ∼ Dir(cG0(A1), . . . , cG0(Am)) (3.7)

for every measurable partition A1, . . . , Am of Ω.

Remark 3.2. We say that A1, . . . , Am is a measurable partition of Ω if Al ⊂ C for all

l = 1, . . . ,m, Al
⋂
Ah = ∅ for l 6= h and

m⋃
l=1

Al = Ω. Note that if A ⊂ C , then A,Ac is a

measurable partition of Ω.

There are three ways of to prove the existence of the Dirichlet process measure, the

first one is via Kolmogorov’s Consistency Theorem as in Ferguson (1973). The second

one is via de Finetti’s Theorem, exchangeability arguments and the Pólya urn scheme

as in Blackwell and MacQueen (1973), and the third one is via a constructive definition

as in Sethuraman (1994). The constructive argument, also known as the stick-breaking

construction, is regarded as the most direct and general proof.

Remark 3.3. If G ∼P where P the Dirichlet Process measure with base distribution

G0 and concentration parameter c, then for ease of notation (in most cases) we will avoid

the reference to the probability measure simply writing G ∼ DP(c,G0).

Remark 3.4. A key fact about the Dirichlet process is that it is almost surely a discrete

measure, Blackwell (1973), i.e. if G ∼ DP(c,G0), then G is a discrete distribution.

Remark 3.5. Given that only discrete distributions G can be sampled from a Dirichlet

process DP(c,G0) it is surprising to observe that its support is quite big, indeed

supp(DP) = {G : supp(G) ⊂ supp(G0)}.
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For example, if the support of G0 is all the real line (take the normal distribution) then

every probability measure is in the support of the Dirichlet process, see Ghosal (2010).

With (3.7) we can easily calculate the mean and variance of the Dirichlet process:

let G ∼ DP(c,G0) and A ⊂ C , since (G(A), G(Ac)) ∼ Be(cG0(A), c(1−G0(A))), thus

E(G(A)) = G0(A) and var(G(A)) =
G0(A)(1−G0(A))

c+ 1
. (3.8)

Then the larger c is, the smaller the variance, and the Dirichlet process will concentrate

more mass around its mean.

Remark 3.6. If G ∼ DP(c,G0), thus G is a discrete random distribution and we can in

turn draw samples from G itself.

3.1.3 Posterior and predictive distributions

Let G be some distribution and let θ1, . . . , θn be an i. i.d. sequence from G, we can then

assign a Dirichlet process prior over G (the support of the Dirichlet process is quite big,

despite being a discrete distribution) and calculate the posterior distribution of G. This

is a Dirichlet process again:

[G|θ1, . . . , θn] ∼ DP

(
c+ n,

c

c+ n
G0 +

n

c+ n
Fn

)
, (3.9)

where Fn =
1

n

n∑
i=1

δθi is the empirical distribution function.

From the definition of the Dirichlet process (3.9) indicates that for any measurable

partition A1, . . . , Am of Ω

[G(A1), . . . , G(Am)|θ1, . . . , θn] ∼ Dir(cG0(A1) + n1, . . . , cG0(Am) + nm), (3.10)

where nl =
n∑
i=1

δθi(Al) denotes the number of (θi) in Al.

To see that (3.10) is true, without going into technical details, simply note the con-

jugacy between the Dirichlet and the multinomial distribution (3.5).
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From (3.8), the posterior mean is given by

E(G|θ1, . . . , θn) =
c

c+ n
G0 +

n

c+ n
Fn, (3.11)

and thus the posterior mean is a mixture between the prior mean and the empirical

distribution. For a fixed n and large values of c, the posterior mean gives more weight

to G0. On the other hand, for a fixed c and larger values of n the empirical distribution

will have more weight.

To finish this Section we consider the predictive distribution of θn+1, conditional on

θ1, . . . , θn. An important property to calculate this is that [θn+1|G, θ1, . . . , θn] ∼ G, then

for some A ∈ C and integrating out G we have

P(θn+1 ∈ A|θ1, . . . , θn) = E(G(A)|θ1, . . . , θn)

=
c

c+ n
G0(A) +

n

c+ n
Fn(A).

Note that if in (3.6) we take k = 2, α1 = cG0(A) and α2 = c(1 − G0(A)) we obtain the

same result, in that case w would be playing the role of G.

The sequence of predictive distributions (3.12) for θ1, θ2, θ3, . . . is called the Pólya or

Blackwell and MacQueen urn scheme.

P(θn+1|θ1, . . . , θn) =
c

c+ n
G0 +

n

c+ n
Fn. (3.12)

3.1.4 Clustering

If G ∼ DP(c,G0), then the discrete distribution G generates ties in the observations,

and this is extremely useful in clustering applications. In a sample θ1, . . . , θn we may

only have k distinct values ϕ1, . . . , ϕk with k ≤ n. Thus k represents the number of

clusters, and the different values define a clustering structure over θ1, . . . , θn. With this

idea, letting nj = #{i : θi = ϕj}, for j = 1, . . . , k, it is possible to rewrite (3.12), as

P(θn+1|θ1, . . . , θn) =
c

c+ n
G0 +

1

c+ n

k∑
j=1

njδϕj , (3.13)
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Remark 3.7. This process defines discrete latent variables: take zi = j iff θi = ϕj , for

i = 1, . . . , n, then zi indicates to which cluster each θi belongs. Under this setting the

number of clusters, k, is the number of distinct values in z = {zi}ni=1 (nj = #{i : zi = j}).

Thus, from equation (3.13) we have that

p(zn+1 = l|c, n, z1, . . . , zn) =
c

c+ n
δk+1(l) +

1

c+ n

k∑
j=1

njδj(l). (3.14)

The discrete distribution (3.14) says that the number of clusters can change between

realizations of the experiment.

Remark 3.8. Once zn+1 has been drawn, and given ϕ1, . . . , ϕk, it is easy to work out

θn+1. If zn+1 ∈ {1, . . . , k}, then θn+1 = ϕzn+1 and if zn+1 /∈ {1, . . . , k}, then we draw a

new value via θn+1 ∼ G0. The same is true with θn+1. If say θn+1 = ϕj , then zn+1 = j,

and if θn+1 6= ϕj , for j = 1, . . . , k, then zn+1 = k + 1 (θn+1 must have been drawn via

θn+1 ∼ G0).

The z induce random partitions over the set {1, . . . , n} (similarly to those induced

in the multinomial model). These random partitions define groups or clusters among

the observations, and we could try to proceed as in multinomial model. Studying the

distribution of the random partitions of n objects into k groups, but this will be far more

complex than those of the multinomial model. In that case the number of clusters is

fixed, through different realizations of the experiment, instead for the Dirichlet process

k can change. This is beyond the scope of this review, however, it is interesting to note

that all the properties of the Dirichlet process can be deduced studying these random

partitions, see for example Pitman (2006).

From (3.14) we can calculate the expected number of clusters among n+ 1 observa-

tions. Note that for i ≥ 1, zi (and θi) takes a new value with probability
c

c+ i
, hence

incrementing k in one. Thus

E(k|c, n+ 1) =
n+1∑
i=1

c

c+ i
∼= c log

(
n+ 1

c

)
as n→∞. (3.15)
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This indicates that the number of clusters grows logarithmically in the number of obser-

vations, hence we can expect the number of clusters k to be far smaller than the number

of observations n+ 1.

3.1.5 Stick-breaking representation

The constructive representation of the Dirichlet process is often called the stick-breaking

representation, Sethuraman (1994). Let G ∼ DP(c,G0), we can construct the discrete

random measure G via

[v1, v2, . . . , |c] ∼i.i.d. Be(·|1, c),

⇒ w1 = v1, wj = vj

j−1∏
l=1

(1− vl) for j ≥ 2, (3.16)

[θ1, θ2, . . . , ] ∼i.i.d. G0,

⇒ G(·) =
∞∑
j=1

wjδθj (·). (3.17)

Remark 3.9. In (3.16) notice that

k∑
j=1

wj −−−→
k→∞

1

with probability one. Further, note that for j = 1, 2, . . .

E(wj) =

(
1

c+ 1

)(
c

c+ 1

)j−1

⇒ E(w1) ≥ E(w2) ≥ · · · ≥ E(wj) −−−→
j→∞

0,

so the weights are decreasing in expectation, and we say that they are weakly identifiable.

Truncating the infinite mixture (3.17), up to an integer k, such that

k∑
j=1

wj ≈ 1

we can sample G ∼ DP(c,G0) approximately. Figure 3.1 displays the probability mass

function of G ∼ DP(c,N(0, 1)) along with the density of the base distribution. Different

values of c are being plotted: c = 0.5, 1, 5 and 10.

Remark 3.10. Figure 3.1 stresses the importance of the concentration parameter c.

When c is small, then G tends to concentrate its mass on a few atoms, see Figure 3.1
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graphic a): we fixed c = 0.5 and to obtain
k∑
j=1

wj ≈ 1 we set k = 8. On the other hand,

when c is large then G is a distribution with many atoms spread all over the support of

the base distribution, see graphic d): for c = 10, to obtain
k∑
j=1

wj ≈ 1 we set k = 180.

Finally, note that for large values of c the c.d. f. of G gets closer to the c.d. f. of the base

distribution (graphic not shown).
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Figure 3.1: Probability mass function of G ∼ DP(c,N(0, 1)) for different values of c.

For a more comprehensive summary of properties of the Dirichlet process, see Ghosal

(2010), and for nonparametric models beyond the Dirichlet process see Walker, Damien,

Laud, and Smith (1999) and Lijoi and Prünster (2010).

3.2 The mixture of Dirichlet process model

The mixture of Dirichlet process model (MDP), Lo (1984), consists in mixing a kernel

k(y|θ) with respect to a random distribution function G, from some space of distribution
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functions Ψ, to define a random density:

fG(y) =

∫
Θ
k(y|θ)G(dθ). (3.18)

Provided that the kernel k(y|θ) is a density for each θ, then fG(y) will be a density. The

original aim under the MDP model was to generate a density estimate for non-standard

density functions, see Lo (1984). When G varies on Ψ, the fG(y)’s define a family of

random density functions, let us say L . The key point is that L should be rich enough

to cover the sub-space where the target density is, which is not known a-priori. Hence,

the best way to proceed is to make L as large as possible, and this is achieved by taking

Ψ as the space of discrete distribution functions. Thus a convenient prior for G is the

Dirichlet process: G ∼ DP(c,G0(·|γ)) where γ are the parameters of G0. Hence, using

Sethuraman’s stick-breaking representation of the Dirichlet process (3.17), we can write

fG(y) =

∞∑
j=1

wjk(y|θj), (3.19)

and for a suitable choice of k(y|θ), L will cover a broad range of density functions.

Alternatively, the MDP model can be written hierarchically as follows

c ∼ p(c) and γ ∼ p(γ),

[G|c, γ] ∼ DP(c,G0(·|γ)),

[θ1, . . . , θn|G] ∼i.i.d. G,

[yi|θi] ∼ k(·|θi), i = 1, . . . , n, (3.20)

so we will model data y = {yi}ni=1 using the latent parameters θ1, . . . , θn.

It is not straightforward to sample from the posterior distribution of the MDP model,

and MCMC strategies are the preferred choice. There are two main ideas to tackle this

problem, and these are related to the two representations of the Dirichlet process:

� Marginal methods: these methods exploit Pólya’s urn representation of the

Dirichlet process (3.12). Thus the aim is to integrate out analytically the random
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distribution G, and work with a finite model. These strategies are often described

hierarchically as in (3.20), writing the random distribution G explicitly.

� Conditional methods: these algorithms adopt Sethuraman’s stick-breaking rep-

resentation of the Dirichlet process (3.17), and then work directly with the infinite

mixture (3.19). It is clear that under this perspective some ideas and interpretation

of the finite mixture model can be borrowed. However, we will need to deal with

the infinite number of components and with the stick-breaking representation of

the weights (3.16).

3.2.1 Marginal algorithms

The first algorithm of this kind is due to Escobar (1988) and then it was extended and

formally published in Escobar and West (1995). Using an infinite mixture of normals,

and via a Gibbs sampler Escobar and West (1995) generated density estimates, estimated

the number of components of the mixture, the number of modes within the data and

even made inference about the concentration parameter c of the Dirichlet process.

From this perspective, (3.20), a clustering structure can be defined by the k distinct

values ϕ1, . . . , ϕk of θ1, . . . , θn: G is a discrete measure and it generates ties. Thus it

is clear that for different realizations of the experiment the number of distinct values

may change. Section 3.1.4 is key to understand the underlying ideas for the modeling of

k under this setting. Note in (3.15) the expected number of groups depends on c and

n, the concentration parameter of the Dirichlet process and the number of observations

respectively. For a fixed n, larger values of c will favor larger number of groups, and for a

fixed c, larger number of observations will favor more groups. Also note that with (3.20)

it is easy to see that additional flexibility can be included in the model by imposing

priors over c and γ.
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3.2.1.1 Escobar and West (1995)

We start integrating out G from the hierarchical model (3.20), via the Pólya urn repre-

sentation of the Dirichlet process (3.12). Hence, it is possible to write the joint for the

latent parameters directly:

p(θ1, . . . , θn|γ, c) =
n∏
i=1

p(θi|θ1, . . . , θi−1, γ, c),

=
n∏
i=1

{
cg0(θi|γ) +

∑i−1
j=1 δθj (θi)

c+ i− 1

}
, (3.21)

where g0 is the density function corresponding to G0.

We do not have to worry about G anymore, and (3.20) becomes a finite model:

c ∼ p(c) and γ ∼ p(γ),

[θ1, . . . , θn|γ, c] ∼
n∏
i=1

{
cg0(θi|γ) +

∑i−1
j=1 δθj (θi)

c+ i− 1

}
,

[yi|θi] ∼ k(·|θi), i = 1, . . . , n. (3.22)

From (3.21), the full joint conditionals for the Gibbs sampler can be expressed as

p(θi|θ−i, γ, c,y) ∝ k(yi|θi)

cg0(θi|γ) +
∑
j 6=i

δθj (θi)

 ,

∝ r0g(θi|yi, γ) +
∑
j 6=i

rijδθj (θi), (3.23)

with

g(θi|yi, γ) =
k(yi|θi)g0(θi|γ)∫
k(yi|θi)g0(θi|γ)dθi

, (3.24)

and where y = {yi}ni=1 and θ−i = (θ1, . . . , θi−1, θi+1, . . . , θn).

To sample from the mixture (3.23), we need to ensure the normalizing weights sum

up to one, i.e. r0 +
∑

j 6=i rij = 1, and this is achieved from

b = c

∫
k(yi|θi)g0(θi|γ)dθi +

∑
j 6=i

k(yi, θj), (3.25)
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and then taking

r0 =
c

b

∫
k(yi|θi)g0(θi|γ)dθi,

rij =
1

b
k(yi|θj), for j 6= i.

Remark 3.11. The calculation of the normalizing constant (3.25) is feasible when

g0(θ|γ) is a conjugate prior for k(y|θ), and this was the setting of Escobar and West

(1995): they use a normal kernel and assigned a normal/inverse-gamma distribution to

g0(θ|γ). For non-conjugate pairs this scheme becomes rather complicated.

To make inference about the concentration parameter c, of the Dirichlet process,

Escobar and West borrowed the implied prior for k, p(k|c, n), from Antoniak (1974), and

updated c via p(c|k, n) ∝ p(c)p(k|c, n). A concise description of this algorithm is given

in Algorithm 3.2.

Algorithm 3.2 Escobar and West (1995): marginal strategy

Require: Given ct, kt, (θt1, . . . , θ
t
n), simulate ct+1, kt+1, (θt+1

1 , . . . , θt+1
n ) via

1: for i = 1 to n do

2:

θt+1
i =


θtj with probability rij (j 6= i),

θi ∼ g(θi|yi, γ) with probability r0.

3: end for

4: Update kt+1: kt+1 is the number of distinct values among θt+1
1 , . . . , θt+1

n .

5: ct+1 ∼ p(c|kt+1, n) ∝ p(c)p(kt+1|c, n) ∝ p(c)
{
ck
t+1 Γ(c)

Γ(c+ n)

}
.

The number of components of the mixture k is recorded at each iteration of the

algorithm, and to make inference about it we proceed as in the finite mixture model

(2.37). To generate a predictive density estimate we approximate

p(y∗|y) ≈ 1

N

N∑
t=1

k(y∗|θ∗),
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for t = 1, . . . , N (N is the number of iterations after a burn in period), where θ∗ is drawn

from (3.12).

Escobar and West (1995) also demonstrated that the Markov chain generated via

their strategy converges to the correct posterior distribution, and that it is irreducible

and aperiodic. From Lemma A.3.1 in Appendix A the chain is ergodic. However, despite

this result, the algorithm shows poor mixing, and thus convergence to the posterior

distribution is rather slow. We have borrowed a quote from Neal (2000) that describes

this in detail:

The problem is that there are often groups of observations that with high

probability are associated with the same θ. Since the algorithm cannot change

the θ for more than one observation simultaneously, a change to the θ val-

ues for observations in such a group can occur only rarely, as such a change

requires passage through a low-probability intermediate state in which ob-

servations in the group do not all have the same θ value.

3.2.1.2 MacEachern (1994)

To improve the convergence problems of Algorithm 3.2, MacEachern (1994) developed

a more efficient approach. This time the idea is to use the clustering properties of the

Dirichlet process, and update the Markov chain via the discrete latent variables z, see

Section 3.1.4.

First, G is integrated out from (3.20), but now via (3.13), in this case

p(θ1, . . . , θn|γ, c) =

n∏
i=1

{
cg0(θi|γ) +

∑k
j=1 njδϕj (θi)

c+ i− 1

}
, (3.26)

Hence, the full joint conditionals for the Gibbs sampler can be expressed as

p(θi|θ−i, z−i, γ, c, yi) ∝ k(yi|θi)

cg0(θi|γ) +
∑
j∈A−i

n−i,jδϕj (θi)

 ,

∝ r0g(θi|γ, yi) +
∑
j∈A−i

rijδϕj (θi), (3.27)
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where θ−i is as before, z−i = (z1, . . . , zi−1, zi+1, . . . , zn), A−i = set of unique values

of z−i, n−i,j =
∑
l 6=i

δj(zl), and g(θi|γ, yi) is as in (3.24)

Again in (3.27) we need to ensure r0+
∑
j∈A−i

rij = 1, and this is achieved by calculating

b = c

∫
k(yi|θ)g0(θ|γ)dθ +

∑
j∈A−i

n−i,jk(yi|ϕj),

and then

r0 =
c

b

∫
k(yi|θ)g0(θ|γ)dθ, (3.28)

rij =
1

b
n−i,jk(yi|ϕj) for j ∈ A−i. (3.29)

Remark 3.12. Observe that (3.27) defines the discrete variable zi, where

p(zi|θ−i, z−i, γ, c, yi) = r0δk+1(zi) +
∑
j∈A−i

rijδj(zi)

Hence, the probability of to open a new group is given by (3.28), and to allocate an

observation to one of the existing groups by (3.29). Further, note that if zi is sampled

first, then θi can be easily updated.

Remark 3.13. To update the variables ϕ1, . . . , ϕk we use the latent allocations and

proceed exactly as in the finite mixture model, see Algorithm 2.1.

A concise description of MacEachern’s algorithm is given in Algorithm 3.3. The

problem with this strategy lies in the fact that if g0(θ|γ) is not chosen as a conjugate

prior for k(y|θ), then it will be costly to integrate out θi numerically.

3.2.1.3 Neal (2000)

It is clear how the last two algorithms integrate out the random distribution, G, from

the MDP model via the Pólya urn representation of the Dirichlet process (3.12). How-

ever, Neal (2000) developed an alternative view that is useful for deriving algorithms to

sample from the posterior distribution for the MDP model. In this case we start with a
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Algorithm 3.3 MacEachern (1994): marginal strategy

Require: Given ct, γt, kt, (θt1, . . . , θ
t
n), (ϕt1, . . . , ϕ

t
kt), z

t, simulate ct+1, γt+1, kt+1,

(θt+1
1 , . . . , θt+1

n ), (ϕt+1
1 , . . . , ϕt+1

kt+1), zt+1 via

1: kt+1 = kt

2: for i = 1 to n do

3: Find A−i: A−i = set of unique values in (zt+1
1 , zt+1

2 , . . . , zt+1
i−1 , z

t
i+1, . . . , z

t
n).

4: (j ∈ A−i
⋃
{kt+1 + 1})

zt+1
i ∼ p(zi = j| · · · ) =


rij if j ∈ A−i,

r0 otherwise.

θt+1
i =


ϕzt+1

i
if zt+1

i ∈ A−i,

θi ∼ g(θi|yi, γt) otherwise.

5: Update kt+1: kt+1 = #set of unique values in A−i
⋃
{zt+1
i }.

6: end for

7: for j = 1, . . . , kt+1 do

8: ϕt+1
j ∼ p(ϕj |zt+1, γt,y) ∝ g0(ϕj |γt)

 ∏
{i:zt+1

i =j}

k(yi|ϕj)

,

9: end for

10: γt+1 ∼ p(γ|ϕt+1
1 , . . . , ϕt+1

kt+1 , k
t+1) ∝ p(γ)


kt+1∏
j=1

g0(ϕt+1
j |γ)

 ,

11: ct+1 ∼ p(c|kt+1, n) ∝ p(c)p(kt+1|c, n) ∝ p(c)
{
ck
t+1 Γ(c)

Γ(c+ n)

}
.
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hierarchical representation of the finite mixture model:

c ∼ p(c) and γ ∼ p(γ),

[w|δ, k] ∼ Dir

(
w

∣∣∣∣ ck , . . . , ck
)
,

[ϕj |γ, k] ∼ g0(·|γ), j = 1, 2, . . . , k,

[zi|w, k] ∼
k∑
j=1

wjδj(·), i = 1, . . . , n,

[yi|ϕ, z] ∼ k(·|ϕzi), i = 1, . . . , n. (3.30)

Remark 3.14. Note that (3.30) is a particular case of the finite mixture model (2.5),

and in this case the prior over the finite weights is a symmetric Dirichlet distribution

with parameter c/k. Hence, we can use the MCMC techniques of Chapter 2 to generate

a sample from the correct posterior distribution of this model.

Remark 3.15. In this case we will work directly with the set of distinct values ϕ =

(ϕ1, . . . , ϕk) of (θ1, . . . , θn) (k ≤ n).

It is possible to integrate out the finite weights from (3.30) and derive the prior for

the zi, and this is of the form (see p. 251 of Neal (2000)):

p(zi = j|c, i− 1, z1, . . . , zi−1) =
ni,j + c/k

c+ i− 1
,

where ni,j =
i∑
l=1

δj(zl).

If we now let k go to infinity, the conditional probabilities reach the following limits

p(zi = j|c, i− 1, z1, . . . , zi−1) =


c

c+ i− 1
, if j /∈ {z1, . . . , zi},

ni,j
c+ i− 1

, for j ∈ {z1, . . . , zi}.
(3.31)

But these conditional probabilities are equivalent to those obtained following Pólya’s

urn representation of the Dirichlet process, see expressions (3.13) and (3.14). Hence,

from the remark 3.8 we know that the conditional probabilities (3.31) are all that is
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needed to define the DP model and thus the MDP model via (3.30), and this is the main

argument of Neal (2000).

To devise a Gibbs sampler following this alternative view, we need to derive the

conditional probabilities to update the allocations. Thus, going back to the finite mixture

model (3.30), it is not difficult to see that these are given by

p(zi = j|ϕ, z−i, c, n, yi) = bk(yi|ϕj)
n−i,j + c/k

c+ n− 1
,

where n−i,j and z−i are as in the past algorithms, and b is the normalizing constant.

Using the same reasoning as before, we let k go to infinity to obtain

p(zi = j|ϕ, z−i, γ, c, n, yi) =


b

∫
k(yi|ϕ)g0(ϕ|γ)dϕ

c

c+ n− 1
, if j /∈ z−i,

bk(yi|ϕj)
n−i,j

c+ n− 1
, for j ∈ z−i.

(3.32)

This is Algorithm 2 of Neal (2000), and a concise description is given in Algorithm 3.4

(g(θ|yi, γ) is as in the previous strategies). However, this method again relies on g0(θ|γ)

being chosen as a conjugate prior for k(y|θ). An alternative to solve this problem is

provided by Algorithm 8 of Neal (2000), and here ideas similar to those of slice sampling

methods are used (see Section A.4.3 in the Appendix).

The basic idea is as follows. Imagine that a sample from p(x) is needed, hence

we introduce the auxiliary variable y and sample from p(x, y) instead. We will need

to sample from the conditional distributions p(y|x) and p(x|y), then we keep only the

variables of interest (the auxiliary variables are discarded). This strategy will clearly

produce a sample from p(x).

This idea can be used to update the zi for an MDP model without having to integrate

with respect g0(θ|γ). The permanent state of the Markov chain will consist of the zi and

the ϕ, as in the previous algorithm, but when zi is updated temporary auxiliary variables

are introduced that represent possible values for the parameters of components that are

not associated with any other observations. Thus zi is updated via a Gibbs sampler
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with respect to the distribution that includes these auxiliary variables. For a complete

description see Algorithm 8 of Neal (2000).

Algorithm 3.4 Neal (2000)

Require: Given ct, γt, kt, (θt1, . . . , θ
t
n), (ϕt1, . . . , ϕ

t
kt), z

t, simulate ct+1, γt+1, kt+1,

(θt+1
1 , . . . , θt+1

n ), (ϕt+1
1 , . . . , ϕt+1

kt+1), zt+1 via

1: kt+1 = kt

2: for i = 1 to n do

3: Find A−i: A−i = set of unique values in (zt+1
1 , zt+1

2 , . . . , zt+1
i−1 , z

t
i+1, . . . , z

t
n).

4: (j ∈ A−i
⋃
{kt+1 + 1})

Sample zt+1
i as defined by equation (3.32).

θt+1
i =


ϕzt+1

i
if zt+1

i ∈ A−i,

θi ∼ g(θ|yi, γt) otherwise.

5: Update kt+1: kt+1 = #set of unique values in A−i
⋃
{zt+1
i }.

6: end for

7: for j = 1, . . . , kt+1 do

8: ϕt+1
j ∼ p(ϕj |zt+1, γt,y) ∝ g0(ϕj |γt)

 ∏
{i:zt+1

i =j}

k(yi|ϕj)

,

9: end for

10: γt+1 ∼ p(γ|ϕt+1
1 , . . . , ϕt+1

kt+1 , k
t+1) ∝ p(γ)


kt+1∏
j=1

g0(ϕt+1
j |γ)

 ,

11: ct+1 ∼ p(c|kt+1, n) ∝ p(c)p(kt+1|c, n) ∝ p(c)
{
ck
t+1 Γ(c)

Γ(c+ n)

}
.

3.2.1.4 Convergence

On the convergence side, the strategy of MacEachern (1994) and Neal (2000) generate

ergodic Markov chains, and they exhibit better mixing than that designed by Escobar

and West (1995). However, in both cases there are concerns about the mixing over
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the posterior distribution of the allocations z, which can be poor due to the single-site

updating scheme zi|z−i. This has been discussed for example by Griffin and Holmes

(2010), we follow their ideas to explain this point in detail. Imagine that for some z the

clusters defined by Aj = {i : zi = j}, for j = 1, . . . , 4, are well supported by the data. A

single-site updating scheme can only move between A1, . . . , A4 by visiting “intermediate

clusters” that differ by moving a single observation from one group to the other. This

scheme will mix poorly if there are no well-supported intermediate clusters, since only

one observation can be moved between groups at a time.

Remark 3.16. The poor mixing described for single-site updating schemes is similar to

that of the Gibbs sampler for finite mixtures, see Section 2.2.5.

This problem can be addressed using split and combine moves, here a cluster is split

or two clusters are merged to propose a new configuration of clusters. This proposal is

either accepted or rejected using the Metropolis-Hastings acceptance probability. The

problem now is how to generate proposals with reasonable chance of being accepted. See

Griffin and Holmes (2010) for details about these alternative strategies.

3.2.2 Conditional algorithms

The Pólya urn representation of the Dirichlet process provides mechanisms to design

MCMC samplers to make inference about the posterior distribution of the MDP model.

However, Lo’s model, in conjunction with the Dirichlet process representation of Sethu-

raman (1994), offers the possibility to explore alternative ideas. This has led to interest

in methods which avoid integrating out the random measure G and work directly with

the infinite mixture (3.19). Under this setting, latent allocation variables can be in-

cluded: z = {zi}ni=1, such that given zi, the component from which yi has been drawn

is known, i.e. p(yi|θ, zi) = k(yi|θzi). With the introduction of these latent variables, the



Chapter 3. MCMC Methods for Infinite Mixtures 53

infinite mixture model can be written hierarchically as follows

c ∼ p(·|λ) and γ ∼ p(·|ζ),

[v1, v2 . . . , |c] ∼i.i.d. Be(·|1, c),

⇒ w1 = v1 and wj = vj

j−1∏
l=1

(1− vl) for j ≥ 2,

[θ1, θ2, . . . , |γ] ∼i.i.d. G0(·|γ),

[z1, . . . , zn|w] ∼i.i.d.

∞∑
j=1

wjδj(·),

[y1, . . . , yn|θ, z] ∼i.i.d. k(·|θzi). (3.33)

where θ = {θj}∞j=1 and w = {wj}∞j=1.

Since (3.19) defines an infinite mixture model and because the wj ’s decrease expo-

nentially quickly in expectation (see remark 3.9) only a small number of components, say

k, will be used to model the data. This is the key difference between the infinite model

(3.19) and the finite mixture model (2.1). In the finite mixture model, the number of

components to model the data is fixed and we need to devise the case for an unknown

number of components separately. For the infinite model k changes naturally, then, to

make inference for the number of groups within the data we can take advantage of this

characteristic to estimate p(k|y). So we can use (3.19) for the modeling of clusters or to

generate density estimates of non-standard distributions.

Under this setting, (3.19) or (3.33), it is important to remark that the concentration

parameter c, of the Dirichlet process, plays the same role as in the Pólya urn represen-

tation. To note this from this perspective, see Figure 3.1 and remark 3.10. From the

remark 3.10 it is clear that large values of c will favor larger values of k. The converse

is true, small values of c will support smaller values of k. This is for the modeling of

clusters, but it has the exact same effect in a density estimation context. Under this

framework the concentration parameter c is sometimes called the smoothing parameter:

for larger values of c smoother density estimates are obtained.
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There are three possible approaches to deal with the infinite mixture: truncation,

retrospective sampler and slice sampler. It is important to stress that all the methods

change the infinite mixture (3.19) for a finite mixture; the difference between the three

methods is how this is achieved. Thus leading to a finite-dimensional posterior distri-

bution which can be simulated using similar methods to those described for the finite

mixture model. Assuming a finite mixture with k components, it is easy to write the

corresponding MCMC strategy, this is shown in Algorithm 3.5.

Remark 3.17. The key difference between the three proposals, to change the infinite

mixture for a finite model, lie in steps 7 and 9 of Algorithm 3.5. Note that, without the

assumption of a finite model, there should be an infinite choice for zi, i.e.

p(zi = j|w,θ,y) =
wjk(yi|θj)∑∞
j=1wjk(yi|θj)

(j = 1, 2, . . . , ). (3.34)

It is straightforward to justify all the steps in Algorithm 3.5. First note that Steps

2 and 8 follow directly from the finite model (2.1), and the Gibbs sampler described in

Algorithm 2.1. Step 11 is derived from the ideas of Escobar and West (1995), to update

the concentration parameter of the Dirichlet process. Finally, the full joint conditional

for vj , in Step 3, is obtained via

p(vj |z, c) ∝ Be(vj |1, c)
n∏
i=1

wzi ∝ (1− vj)c−1
k∏
l=1

wnll ,

where from (3.16)

wnll =


vn1

1 if l = 1,

vnll

{
l−1∏
h=1

(1− vh)nl

}
for l ≥ 2.
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Thus (note that n =
∑k

l=1 nl),

p(vj |z, c) ∝ (1− vj)c−1

[
vn1

1

k∏
l=2

vnll

{
l−1∏
h=1

(1− vh)nl

}]
,

∝ (1− vj)c−1
{
v
nj
j (1− vj)nj+1 · · · (1− vj)nk

}
,

∝ v
nj+1−1
j (1− vj)n−n1+···+nj+c−1,

∝ Be

(
vj |nj + 1, n−

j∑
l=1

nl + c

)
.

Algorithm 3.5 Conditional method

Require: Given kt, vt, wt,θt, zt, γt and ct simulate kt+1, vt+1, wt+1, θt+1, zt+1, γt+1

and ct+1 via

1: for j = 1 to kt do

2: θt+1
j ∼ p(θj |zt,y) ∝ p(θj |γt)

∏
{i:zti=j}

k(yi|θj).

3: vt+1
j ∼ p(vj |z, ct) = Be

(
nj + 1, n−

j∑
l=1

nl + ct

)
.

4: Calculate wt+1 via the stick-breaking construction (3.16), i.e.

wt+1
j =


vt+1

1 if j = 1,

wt+1
j−1

(
1− vt+1

j−1

)(
vt+1
j /vt+1

j−1

)
if j ≥ 2.

5: end for

6: γt+1 ∼ p(γ|θt+1
1 , . . . , θt+1

kt , k
t) ∝ p(γ)


kt∏
j=1

g0(θt+1
j |γ)

 ,

7: for i = 1 to n do

8: zt+1
i ∼ p(zi = j|wt+1,θt+1, kt+1,y) ∝ wt+1

j k(yi|θt+1
j ) (j = 1, 2, . . . , kt+1).

9: end for

10: Update kt+1.

11: ct+1 ∼ p(c|kt+1, n) ∝ p(c)p(kt+1|c, n) ∝ p(c)
{
ck
t+1 Γ(c)

Γ(c+ n)

}
.
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3.2.2.1 Truncation method

The truncation method replaces the infinite-dimensional random distribution function

(3.17) with a finite version

Gk(·) =

k∑
j=1

wjδθj (·), where

k∑
j=1

wj ≈ 1. (3.35)

The use of this proposal presents an important problem, how to choose k to obtain a

good approximation of G via Gk. Truncated versions of the Dirichlet process have been

considered for example by Ishwaran and James (2001). Their idea consists of selecting

a value k that controls the difference between the probability of the observations under

the truncated and infinite dimensional priors. The probability under Gk is given by

πk(y) =

∫ ( n∏
i=1

k(yi|θi)Gk(dθi)

)
Πk(Gk),

where Πk represents the probability law of Gk (this definition extends to the infinite-

dimensional case by setting k = ∞). Then if || · ||1 denotes the L1 distance, Ishwaran

and James (2001) showed that

||πk(y)− π∞(y)||1 ≤ 4

1− E


k−1∑
j=1

wj

n
 ≈ 4n exp{−(k − 1)/c}. (3.36)

Thus, from the right hand side of (3.36), k can be chosen to make the bound small. This

allows the simple calculation of a value of k that gives a particular level of error.

Since a truncation is introduced, the normalizing constant in (3.34) is approximated,

and in Algorithm 3.5, Step 9, the truncated method delivers a fixed kt = k for all

t = 1, . . . , N , and in Step 7, the same step as in the Gibbs sampler for finite mixtures is

recovered.

Remark 3.18. The value of k obtained from the truncation method is potentially large.

In the next sections two methods to make inference about suitable stochastic values of

k are described, and these strategies provide values that are much less than the value

provided by the truncation method.
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3.2.2.2 Retrospective method

The retrospective method, Papaspiliopoulos and Roberts (2008), avoids the truncation

by making clever use of properties of the weights derived from the stick-breaking con-

struction (see remark 3.9), and of the inverse cumulative function (ICF) technique for

simulating discrete random variables. That is, let z ∈ {1, 2, . . . , k} be a random variable

such that p(z = j) = wj for j = 1, . . . , k. With 0 ≤ wj ≤ 1 and
∑k

j=1wj = 1, thus we

simulate u ∼ U(0, 1) and set z = j iff

j−1∑
l=0

wl < u ≤
j∑
l=1

wl, with w0 = 0, (3.37)

A formal description of the ICF technique for simulating discrete random variables is

provided in Algorithm 3.6, see Ripley (1987).

Algorithm 3.6 ICF technique for simulating discrete random variables

1: u ∼ U(0, 1). Let j = 1.

2: while
∑j

l=1wl ≤ u do

3: j = j + 1.

4: end while

5: return j.

To understand how the retrospective sampler works imagine that z ∈ {1, 2, . . . , }

(this is the case for (3.34)), and that the first weights accumulate more mass than the

subsequent weights, as the weights generated by the stick-breaking construction (3.16).

Concisely, let G ∼ DP(c,G0) and following retrospective sampler ideas let us generate a

random sample of size n from G. This Algorithm is displayed in Algorithm 3.7.

First, the allocations z1, . . . , zn are sampled following the ICF technique for simulat-

ing discrete random variables. At the end of the algorithm we recover k, the maximum

number of groups needed to generate n allocations, along with w1, . . . , wk and θ1, . . . , θk.

Thus θzi , for i = 1, . . . , n, are random variables i. i.d. from G, and all the information to

generate the graphic of the probability mass function of G is available.
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Remark 3.19. There is no need to know a priori the complete set of probabilities

w1, w2 . . ., to generate zi = j. It is possible to start only with w1 and generate w2, w3, . . . , wk

as required. The total number of groups, k, should be updated if and only if a new

group is opened, this can be seen in Algorithm 3.7, Steps 6-10. Given the structure of

the weights, k will be updated only a few times during the n iterations of the algorithm.

From (3.15), we can expect the number of groups k to be far smaller than the number

of observations n.

Algorithm 3.7 Retrospective sampling for the Dirichlet process

1: Simulate v1 ∼ Be(1, c), w1 = v1 and θ1 ∼ G0. Let k = 1. {Initialize k}

2: for i = 1 to n do

3: u ∼ U(0, 1). Let j = 1.

4: while
∑j

l=1wl ≤ u do

5: j = j + 1.

6: if k < j then

7: k = k + 1. {Update the number of groups k (only if needed)}

8: vj ∼ Be(1, c) and θj ∼ G0. {Generate the extra random variables}

9: wj = vj

(
1− vj−1

vj−1

)
wj−1. {Generate the weights via (3.16)}

10: end if

11: end while

12: zi = j. {Storing the sampled allocation}

13: end for

14: return z1, . . . , zn. {Sampled allocations}

15: return k, (w1, . . . , wk), (θ1, . . . , θk). {Information to recover G}

Via retrospective sampler ideas a sample from G is easily generated, however simu-

lation from zi in Algorithm 3.5 is more complicated.

Remark 3.20. It is not possible to calculate the normalizing constant for the weights

of the target density, see (3.34).
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To overcome this problem the obvious choice is a Metropolis-Hastings sampler, see

Appendix A, Section A.4.2. The key fact is that the target density should be known up to

a proportionality constant. In this framework, first, an instrumental distribution needs

to be defined, second, proposals are generated using the instrumental distribution and

finally these proposals are evaluated in the Metropolis-Hastings acceptance probability.

With these ideas, to update z, we can use a composition of n Metropolis-Hastings

kernels, which update each of the zi’s in turn. The strategy outlined by Papaspiliopoulos

and Roberts (2008) is as follows. Let k = max{z} = max
i=1,...,n

{zi} and

z(i, j) = (z1, . . . , zi−1, j, zi+1, . . . , zn)

be the vector of allocations produced from z by substituting the ith element by j. Thus,

the update for each zi is generated by proposing to move z to z(i, j), where the proposed

z(i, j) is generated from the probability mass function

q(z(i, j)|z) =


wjk(yi|θj)/bi(z), for j ≤ k,

wjMi(z)/bi(z), for j > k,

where Mi(z) = max
j≤k
{k(yi|θj)}, and the normalizing constant is given by

bi(z) =

k∑
j=1

wjk(yi|θj) +Mi(z)

1−
k∑
j=1

wj

 .

The analogous definitions are coherent for z(i, j). In this case, k∗ = max{z(i, j)} will be

the maximum element of z(i, j). Also note the variables for the proposal z(i, j) will be

denoted by v∗ = {v∗j }k
∗
j=1 w∗ = {w∗j}k

∗
j=1 and θ∗ = {θ∗j}k

∗
j=1.

The variables for the proposals are generated via

θ∗j ∼ p(θ∗j |γ)
∏

{i:zi=j}

k(yi|θ∗j ) if j ≤ k or ∼ p(θ∗j |γ) otherwise,

v∗j ∼ Be

(
nj + 1, n−

j∑
l=1

nl + c

)
if j ≤ k or ∼ Be (1, c) otherwise,

⇒ w∗j = w∗j−1

(
1− v∗j−1

) (
v∗j /v

∗
j−1

)
.
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Remark 3.21. If j > k the additional random variables are sampled from the priors,

only if needed, and this is why retrospective sampler ideas work under this framework.

Defining

πz,z(i,j) =
p(zi = j|w∗, θ∗,y)q(z|z(i, j))

p(zi|w, θ,y)q(z(i, j)|z)
,

the acceptance probability for the Metropolis-Hastings can be derived considering three

cases:

πz,z(i,j) =



(
w∗jk(yi|θ∗j )
wzik(yi|θzi)

)(
wzik(yi|θzi)bi(z)

w∗jk(yi|θ∗j )bi(z(i, j))

)
, if j ≤ k and k = k∗,(

w∗jk(yi|θ∗j )
wzik(yi|θzi)

)(
wziMi(z(i, j))bi(z)

w∗jk(yi|θ∗j )bi(z(i, j))

)
, if j ≤ k and k∗ < k,(

w∗jk(yi|θ∗j )
wzik(yi|θzi)

)(
wzik(yi|θzi)bi(z)

w∗jMi(z)bi(z(i, j))

)
, if j ≤ k∗ and k < k∗.

Canceling the respective terms in each case, the acceptance probability is given by

α(z, z(i, j)) =



1, if j ≤ k and k = k∗,

min

{
1,

Mi(z(i, j))bi(z)

k(yi|θzi)bi(z(i, j))

}
, if j ≤ k and k∗ < k,

min

{
1,

k(yi|θ∗j )bi(z)

Mi(z)bi(z(i, j))

}
, if j ≤ k∗ and k < k∗.

(3.38)

The retrospective sampler strategy to solve Steps 7-10 of Algorithm 3.5, is summa-

rized in Algorithm 3.8.

3.2.2.3 Slice sampler

A second method to sample from (3.34) without truncation error was first described by

Walker (2007), and later improved and extended by Kalli, Griffin, and Walker (2011).

This method is based on slice sample schemes (Damien, Wakefield, and Walker (1999)),

see Section A.4.3. The idea is to add for every zi a slice variable ui such that

p(zi, ui|w, θ,y) ∝ U(ui|0, ξzi)wzik(yi|θzi). (3.39)

For every positive sequence ξ1, ξ2, . . . expression (3.39) is a valid joint distribution, also

note that integrating ui we go back to the original distribution (3.34).
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Algorithm 3.8 Retrospective sampler

Require: k, w, θ and z.

1: k∗ = k.

2: for j = 1 to k∗ do

3: θ∗j ∼ p(θ∗j |z,y) ∝ p(θ∗j |γ)
∏

{i:zti=j}

k(yi|θ∗j ).

4: v∗j ∼ p(v∗j |z, c) = Be

(
nj + 1, n−

j∑
l=1

nl + c

)
.

5: Calculate w∗, i.e.

w∗j =


v∗1 if j = 1,

w∗j−1

(
1− v∗j−1

) (
v∗j /v

∗
j−1

)
if j ≥ 2.

6: end for

7: for i = 1 to n do

8: u ∼ U(0, 1). Let j = 1.

9: while
∑j

l=1 q(z(i, l)|z) ≤ u do

10: j = j + 1

11: if k∗ < j then

12: k∗ = k∗ + 1. {Update the number of groups (only if needed)}

13: v∗j ∼ Be(1, c) and θ∗j ∼ p(θ∗j |γ). {Generate the extra random variables}

14: w∗j = w∗j−1(1− v∗j−1)(v∗j /v
∗
j−1). {Generate the weights via (3.16)}

15: end if

16: end while

17: Set zi = j with probability α(z, z(i, j)).

18: k = max{z}.

19: end for

20: return k, z.
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Remark 3.22. The key point under (3.39) is that if ξ1, ξ2, . . . is taken as a decreasing

sequence, hence zi is forced to be from a finite set.

To see this let us assume that h : R→ R+ is a continuous decreasing function (thus

invertible), i.e. for x, z ∈ R, then

x < z ⇔ h(z) < h(x), (3.40)

with inverse h−1, and define a deterministic positive decreasing sequence ξ1, ξ2, . . ., via

ξj = h(j), for j = 1, . . ., hence from (3.39) and (3.40)

ui ∼ U(ui|0, h(zi)) ⇔ ui < h(zi) ⇔ zi < h−1(ui),

so if ki = bh−1(ui)c (where bac is the closest integer to a less or equal than a) it follows

that

zi ≤ ki ≤ h−1(ui)⇒ zi ∈ {1, . . . , ki}, for i = 1, . . . , n.

Now zi is chosen from a finite set, and we can devise a simple Gibbs algorithm to

sample from (3.39). We display a summary of this strategy in Algorithm 3.9, this deals

with Steps 7-10 of Algorithm 3.5.

Algorithm 3.9 Slice sampler

Require: w, θ and (ui, ki), for i = 1, . . . , n.

1: for i = 1 to n do

2: zi ∼ p(zi = j|ui,w, θ,y) =
wjk(yi|θj)∑ki
j=1wjk(yi|θj)

(j = 1, . . . , ki).

3: ui ∼ p(ui|zi) = U(ui|0, h(zi)).

4: ki = bh−1(ui)c.

5: end for

6: k = max
i=1,...,n

{ki}.

7: return k, z and (ui, ki) for i = 1, . . . , n.

The choice of ξ1, ξ2, . . . is a delicate issue and any choice has to balance efficiency and

computational time. Kalli, Griffin, and Walker (2011) found that the mixing depends
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on the rate at which the ration rj = E(wj)/ξj increases with j. Faster rates of increase

are associated with better mixing but longer running times, since the average size of the

set Au = {j : u > ξj} increases. The authors suggested increasing the rate of increase

of ri until the gains in mixing are counter-balanced by the longer running time. They

reported that rj ∝ (1.5)j strikes a good balance.

3.2.2.4 Label switching moves for infinite mixtures

Despite the weights of the Dirichlet process being weakly identifiable, see (3.9), the

posterior distribution of each wj is still multimodal. However, the sampler may get

trapped in one of the local modes, thus, to improve mixing (escape trapping states and

improve convergence) Papaspiliopoulos and Roberts (2008), included “label switching

moves”.

Remark 3.23. See Chapter 4 that is devoted to the label switching problem under

a finite mixture setting, and Section 2.2.5, of Chapter 2, for a discussion on a related

problem.

There are two complementary moves, each designed to force the appearance of the

label switching phenomenon. The proposals are devised using the structure of the weights

of the Dirichlet process. The first proposes to change the labels j and l of two randomly

chosen components (nj , nl > 0). The probability of such a change is accepted with

probability

α(j, l) = min

{
1,

(
wj
wl

)nl−nj}
. (3.41)

This proposal will be highly accepted if the selected weights are similar. The second

move proposes to change the labels j and j + 1, and at the same time to exchange vj

and vj+1. This change is accepted with probability

α(j, j + 1) = min

{
1,

(1− vj+1)nj

(1− vj)nj+1

}
. (3.42)

The probability of acceptance for this proposal is high if the clusters are very unequal.
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3.2.2.5 Additional comments

� Inference about the number of components. In the MCMC sampler for the

finite mixture model with k components (k known or unknown), see Algorithm

2.1 or Section 2.3.2, a certain number of empty components are generated at each

iteration of the sampler. These are components who have no observations assigned

to them. This happens despite the fact that at each iteration of the sampler the

number of choices for zi is the same, k, for i = 1, . . . , n, and that given δ = 1,

the prior for the weights is uniform over the space w1 + · · · + wk = 1. For the

infinite mixture model, each zi has ki choices, for i = 1, . . . , n. This can clearly be

seen in the slice sampler strategy, but it is also true in the retrospective sampler,

and the prior for the weights is rather disperse. This generates large numbers of

empty components throughout iterations of the MCMC sampler, and thus clearly

inflating the estimated number of underlying groups or components k in the sample.

A common solution is to store, at each iteration of the MCMC strategy, the number

of non-empty components, let us say kfull, where k = kfull + kempty, and kempty

is the number of empty components. Then, base the inference for the number

of groups only in kfull. Note that following this idea it is also possible to make

inference for the number of components via the truncation method.

� Comparative between retrospective and marginal methods. To com-

pare the performance between the retrospective and conditional samplers, Pa-

paspiliopoulos and Roberts (2008) performed a simulation study. The measure of

comparison was the integrated auto-correlation time. Integrated auto-correlation

time is of interest as it controls the variance of the Monte Carlo estimator f̄ of

f , thus if all the estimators have converged to f , the estimator with the smallest

integrated auto-correlation time should be the most accurate. These comparisons

showed that marginal methods produce smaller integrated auto-correlation times.
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After a careful inspection Papaspiliopoulos and Roberts (2008) suggested that this

may be due to the fact that the retrospective sampler has to explore multiple

modes in the posterior distribution; On the other hand, the labelling is not im-

portant in the marginal approaches, which work with the unidentifiable allocation

structure and do not need to explore a multimodal distribution. Finally, they ob-

served that the label-switching moves substantially improved the performance of

their algorithm.

� Comparative between conditional methods. A comparison between condi-

tional methods was carried out by Kalli, Griffin, and Walker (2011). Here again the

measure of comparison was the integrated auto-correlation time. The comparison

was carried out using different alternatives for ξ1, ξ2, . . ., for the slice sampler, and

choosing different levels or error for the truncation method. In the end the differ-

ence between the truncation method, retrospective sampler and the most efficient

slice sampler was marginal, however it was found that the retrospective sampler

produced the smallest auto-correlation error. It is important to say that comparing

the retrospective and slice sampler, Algorithms 3.8 and 3.9, respectively, is easy

to see that the slice sampler is much easier to implement than the retrospective

algorithm.



Chapter 4

Label Switching in Finite Mixture

Models

As described in Chapter 1, label switching is a well known problem in the Bayesian

analysis of finite mixture models. On the one hand, it has been perceived as a prerequisite

to justify MCMC convergence and on the other hand it complicates inference. In this

Chapter we review the strategies to force the appearance of label switching, and then

focus our attention on the proposals to undo the label switching deterministically.

We first describe a general framework in which deterministic relabeling algorithms

can be expressed as versions of the assignment problem: with different costs, to then

formulate a new relabeling algorithm following these ideas. Finally, we compare our pro-

posal with previous relabeling algorithms on univariate and multivariate data examples.

In this Chapter we will assume the number of components k to be known.

4.1 Label switching in mixture models

The ultimate objective under any relabeling algorithm is to gain identifiability for the

components, and then to be able to perform component specific inference.

66
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4.1.1 Component specific inference in mixture models

The latent variables (2.2) introduce a natural clustering structure over the observations

and are the basis for making inference about the hidden groups. Under this framework,

the goal is to find the cluster from which each yi is drawn. Hence, to group a set of

observations into k clusters, we make inference about the classification probabilities of

each observation. If a single best clustering is all that is needed, each observation is

assigned to the cluster with the highest classification probability. In the rare case that

the parameters of the mixture are known, Bayes’ Theorem can be used to calculate the

classification probabilities directly:

p(zi = j|yi,w,θ) =
p(zi = j|w)p(yi|θ, zi = j)∑k
l=1 p(zi = l|w)p(yi|θ, zi = l)

,

=
wjf(yi|θj)∑k
l=1wlf(yi|θl)

. (4.1)

When the parameters of the mixture are unknown, we need to calculate the posterior

classification probabilities:

p(zi = j|y) =

∫
Θ

∫
Ω
p(zi = j,w,θ|y)dwdθ,

=

∫
Θ

∫
Ω
p(zi = j|w,θ, yi)p(w,θ|y)dwdθ,

=

∫
Θ

∫
Ω

wjf(yi|θj)∑k
l=1wlf(yi|θl)

p(w,θ|y)dwdθ. (4.2)

where y = {yi}ni=1. Using MCMC methods, (4.2) can be approximated via:

p(zi = j|y) ≈ 1

N

N∑
t=1

wtjf(yi|θtj)∑k
l=1w

t
lf(yi|θtl )

, (for N large enough) (4.3)

where (wt,θt) ∼ p(w,θ|y) for t = 1, . . . , N (t indexes the iterations of the MCMC).

To classify a new observation y∗, with y∗ conditionally independent of y, we calculate

p(z∗ = j|y∗,y) =

∫
Θ

∫
Ω
p(z∗ = j,w,θ|y∗,y)dwdθ,

∝
∫

Θ

∫
Ω
p(z∗ = j|w,θ)p(y∗|w,θ)p(y|w,θ)p(w,θ)dwdθ,

∝
∫

Θ

∫
Ω
wjf(y∗|θj)p(w,θ|y)dwdθ. (4.4)
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This can be estimated in an analogous way to (4.3), with obvious changes. Note that (4.4)

tells us that to make inference for the scaled predictive distribution of y∗ is equivalent to

the estimation of its classification probabilities. Finally, with the same MCMC output,

posterior mean estimates for components’ parameters (or functions of them) can be

approximated by averaging over the parameters identified by the index of interest:

E (h (wj , θj) |y) =

∫
Θ

∫
Ω
h (wj , θj) p(w,θ|y)dwdθ ≈ 1

N

N∑
t=1

h
(
wtj , θ

t
j

)
. (4.5)

Later on in the thesis our aim will be to estimate classification probabilities (4.2), scale

densities and posterior means (4.5).

4.1.2 The label switching problem: a complication for inference

The likelihood of a mixture model is invariant under permutations of its parameters: let

Pk be the set of the k! permutations of the labels {1, . . . , k}. If for some ρ ∈ Pk we

define ρ(w,θ) := ((wρ(1), . . . , wρ(k)), (θρ(1), . . . , θρ(k))), then, for every ρ, ν ∈ Pk

p(y|ρ(w,θ)) =

n∏
i=1

 k∑
j=1

wρ(j)f(yi|θρ(j))

 =

n∏
i=1

 k∑
j=1

wν(j)f(yi|θν(j))

 = p(y|ν(w,θ)).

Consequently, if the support of the parameters is the same, e.g. under symmetric priors

across the components, the posterior distribution will inherit the likelihood’s invariance.

Hence, in an MCMC algorithm, the indices of the parameters can permute multiple times

between iterations. As a result, we cannot identify the hidden groups which make (4.3),

and all other ergodic averages to estimate characteristics of the components useless.

A popular idea when working with mixture models is to include the latent allocation

variables (2.2). Note that, in this case, for every ρ, ν ∈ Pk

p(y|ρ(θ, z)) =
n∏
i=1

f(yi|θρ(zi)) =
n∏
i=1

f(yi|θν(zi)) = p(y|ν(θ, z)) (4.6)

where for some ρ ∈ Pk, ρ(θ, z) := ((θρ(1), . . . , θρ(k)), (ρ(z1), . . . , ρ(zn))). Hence, given

the allocations z, the likelihood (4.6) is invariant under permutations of the parameters

as well.
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4.1.3 MCMC convergence in mixture models

Under a mixture model set-up, to asses convergence of an MCMC strategy, marginal

posterior estimates are monitored. For the Gibbs sampler, Algorithm 2.1, plots of esti-

mates show that in some cases the labels of the components do not permute, see pp. 960

and 962 of Celeux, Hurn, and Robert (2000) and p. 55 of Jasra, Holmes, and Stephens

(2005). This has been perceived as a symptom of poor mixing of the sampler. See, for

example, Section 2.2.5.

To solve the lack of label switching, Frühwirth-Schnatter (2001) added a Metropolis-

Hastings move that proposes a random permutation of the labels, which is accepted with

probability one (the likelihood is invariant to permutation of the mixture parameters

and we are working under symmetric priors). This solution can be implemented in a

post-processing stage, without further modification of the sampler. However, it was

discarded by Celeux, Hurn, and Robert (2000) p. 959. “Our insistence on searching

for an algorithm that can achieve symmetry without such a move is that any concerns

over convergence are not necessarily dealt by such a strategy, which simply alleviates the

most obvious symptom”, and in Jasra, Holmes, and Stephens (2005) p. 55. it is stated

“this course of action is only appropriate if the posterior distribution is not genuinely

multimodal (which would not be known a priori to simulation)”. Both sets of authors

concluded that alternative and more complex MCMC samplers should be considered.

A broader discussion along the same lines can be found in Geweke (2007), who is not

sympathetic to the construction of complex MCMC algorithms.

To address the convergence problem, Papastamoulis and Iliopoulos (2010) borrowed

the ideas of Papaspiliopoulos and Roberts (2008) and implemented at each iteration of a

Gibbs sampler, a Metropolis-Hastings step that proposes a random permutation between

two labels of the mixture: j, l ∈ {1, . . . , k}. The acceptance probability for this proposal

is given by (3.41). However, this idea was designed to introduce label switching in infinite

mixtures, and under this setting the weights are weakly identifiable, see remark 3.9 in
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Chapter 3. This is not the case for the weights of a finite mixture model, so this proposal

is an alternative to the ideas described in Frühwirth-Schnatter (2001).

The last alternative is to use a trans-dimensional sampler. These samplers improve

mixing within k, see Section 2.4. Note that this solution can be computationally de-

manding and may be inefficient, due to the fact that the chain will not necessarily stay

in the model of interest for the entire run, see Richardson and Green (1997), Stephens

(1997) (Section 4.4.1) and Jasra, Holmes, and Stephens (2005).

A further justification for complex MCMC and trans-dimensional samplers is the

possibility of genuine multimodality. Genuine multimodality is more than the modes

being identical up to permutation of the labels; see Sections 2.3 and 3.4.2 of Stephens

(1997). Hence, the argument against the Gibbs sampler is that in the presence of genuine

multimodality, it can get trapped in one of the symmetric modes, and not visiting genuine

modes.

4.2 Deterministic relabeling strategies

Suppose a sample from the posterior distribution of (2.1) is generated: (wt,θt) ∼

p(w,θ|y) for t = 1, . . . , N . The aim under any relabeling strategy is to find a per-

mutation ρt ∈ Pk, such that the permuted sample:

ρt(w
t,θt) = ((wtρt(1), . . . , w

t
ρt(k)), (θ

t
ρt(1), . . . , θ

t
ρt(k))), (4.7)

for t = 1, . . . , N , recovers identifiably for the mixture components.

An obvious way to proceed is to find artificial constraints over the parameter space

of (w,θ). It is important to note that, in this case, the permutation ρt ∈ Pk will

be the one for which the constraints are satisfied. We can start with basic constraints

and then use summaries of the MCMC output to update them; see Frühwirth-Schnatter

(2001). While this might work in the univariate case, it is challenging to extend to

the multivariate setting. Thus, the objective is to find constraints automatically via
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deterministic algorithms. This is reduced to finding the permutation ρt that minimizes

a loss function. It is important to stress that such a strategy can be implemented

as an on-line method or post-processing the sample, without modifying the MCMC,

hence, allowing us to make inference with the permuted MCMC sample. For a formal

justification, see Stephens (1997), Proposition 3.1.

The key points of any deterministic relabeling strategy are the definition of the loss

function, the selection of a pivot and the minimization step. Let Lt be the loss function

to minimize, and ctl,j be the cost associated if permutation ρt(l) = j is chosen. The

minimization step for the sampled values at iteration t of the MCMC can be formulated

via the well known assignment problem, see Burkard, Dell’Amico, and Martello (2009):

Minimize Lt =
k∑
l=1

k∑
j=1

al,jc
t
l,j (4.8)

subject to
k∑
j=1

al,j =
k∑
l=1

al,j = 1 (l, j = 1, . . . , k),

al,j ∈ {0, 1} (l, j = 1, . . . , k).

We need to solve (4.8) by minimizing over the (al,j); if for some t, (âl,j) is an optimal

solution for the problem and it is that âl,j = 1, then this corresponds to the permutation

ρt(l) = j. Also, let L̂t be the loss function (4.8) evaluated at (âl,j). This formulation

was first used by Stephens (1997). In the next Section we describe the algorithms, loss

functions and pivots used by Stephens (2000b) and Papastamoulis and Iliopoulos (2010).

4.2.1 Kullback-Leibler relabeling

The idea behind Stephens’ Kullback-Leibler (KL) relabeling is straightforward; see Stephens

(2000b). First, during the MCMC algorithm the classification probabilities are stored.

Let Pt
n×k be the matrix of classification probabilities (at iteration t of the MCMC), i.e.

Pt = {{pti,j}kj=1}ni=1 with pti,j =
wtjf(yi|θtj)∑k
l=1w

t
lf(yi|θtl )

.
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Second, let Qn×k be the matrix of “true classification probabilities”. Under Stephens’

setting the matrix Q is the pivot, and the goal is to find a permutation ρt ∈ Pk, of the

columns of Pt: ρt(P
t) := {{pti,ρt(j)}

k
j=1}ni=1, such that the Kullback-Leibler divergence

between ρt(P
t) and Q is minimum over all permutations. Clearly, Q is not known, thus

it is approximated via a recursive algorithm. We provide a description of this strategy

in Algorithm 4.10.

Algorithm 4.10 KL relabeling strategy

1: Initialize ρ1, . . . , ρN . {Usually set to the identity: ρt = {1, . . . , k} for all t}

2: For i = 1 to n and j = 1 to k, calculate q̂i,j =
1

N

N∑
t=1

pti,ρt(j). {estimating Q}

3: For t = 1 to N , find ρt solving (4.8) with costs: ctl,j =
n∑
i=1

pti,j log

(
pti,j
q̂i,l

)
.

4: If an improvement in
∑N

t=1 L̂t has been achieved return to 2. Finish otherwise.

4.2.2 Equivalent classes representatives relabeling

Equivalent classes representatives (ECR) method, Papastamoulis and Iliopoulos (2010),

is a fast and easy strategy to undo the label switching. The idea is as follows. We can

define two allocations z1 and z2 as equivalent if there is a permutation ρ ∈ Pk such

that z1 = ρ(z2) = {ρ(z2
1), . . . , ρ(z2

n)}. Hence, if we let g = {gi}ni=1 be the vector of “true

allocations” and zt the vector of allocations being sampled at iteration t of the MCMC

algorithm, to undo the label switching, we find the permutation ρt ∈ Pk that minimizes

the simple matching distance (SMD) between g and ρt(z
t) = (ρt(z

t
1), . . . , ρt(z

t
n)), for

t = 1, . . . , N :

SMD(g, ρt(z
t)) = n−

n∑
i=1

1{gi = ρt(z
t
i)}.

Thus, in this case, the pivot will be the vector g. An easy solution that avoids

a recursive algorithm to estimate g is to use the MCMC output to choose a “good”

allocation vector, and following Martin, Mengersen, and Robert (2005), Papastamoulis

and Iliopoulos (2010) used the maximum aposteriori estimator (MAP): at each iteration
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of the MCMC we store the latent allocations, zt, and the log posterior distribution,

`t = log{p(wt, θt, zt|y)}. To choose the MAP estimate, we find t∗ such that `t
∗

=

max
t=1,...,N

`t and let gMAP = zt
∗
. A description of the ECR relabeling strategy is provided

in Algorithm 4.11: note that ntj = #{i : zti = j} and ntj,l = #{i : zti = j, gMAP
i = l}.

Algorithm 4.11 ECR relabeling strategy

1: Find gMAP.

2: For t = 1 to N , find ρt solving (4.8) with costs: ctl,j = ntj − ntj,l.

From Algorithm 4.11 it is not clear how the costs work. We have devised a simple

example to understand this point: let zt and gMAP be as in Table 4.1. It is clear

the permutation that minimizes the SMD is ρt = {3, 1, 2, 4} hence, ρt(1) = 3, ρt(2) =

1, ρt(3) = 2 and ρt(4) = 4. Then, the costs are matching distances translated as

comparisons of counts.

i 1 2 3 4 5 6 7 8 9 10 11 12

zt 2 2 2 3 3 3 3 1 1 1 1 4

gMAP 1 1 1 1 2 2 2 2 3 3 3 4

Table 4.1: Example ECR, zt and gMAP

According to Papastamoulis and Iliopoulos (2010), besides the MAP estimate, other

valid choices for good allocation vectors are the most probable allocation and the allo-

cation vector corresponding to the maximum of the likelihood (4.6).

We stress that in this summary of the ECR algorithm we have restricted our attention

to the costs. However, to show the sampler converges to the correct posterior distribu-

tion, Papastamoulis and Iliopoulos (2010) gave more emphasis to arguments about the

equivalent classes induced by ρ(z) for ρ ∈ Pk and convergence proofs: the name “rep-

resentatives” comes from taking a set Z0 consisting of exactly one representative from

each equivalent class and then showing that a sample from the posterior p(w,θ|y) can

be obtained by calculating the posterior restricted to Z0 and then permuting the labels
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of the simulated values.

4.2.3 Comments on KL and ECR algorithms

The KL and ECR algorithms need estimated pivot variables Q̂ and ĝ, respectively.

We stress that these must be chosen as close as possible to the mode of one of the k!

symmetric modes of the posterior distribution: the aim is to eliminate the influence of

the remaining symmetric copies. The KL algorithm uses a posterior mean and the ECR

strategy aims for a posterior mode. This is an important point because it is valid for all

relabeling algorithms. KL achieves its pivot starting from a bad estimate and improving

it via fixed point theory ideas, thus leading to an iterative algorithm that converges

to a local minimum. While ECR aims to find a good estimate from the start (usually

the MAP estimate). Once the pivot variables are obtained, these are used to permute

the MCMC output, i.e. (4.7), and obtain a representative of one of the modes of the

posterior distribution.

The real difference between the algorithms are the costs used in the loss function

(4.8). It is possible to use the MAP estimator of Q: QMAP on the KL algorithm. In the

same manner, via Algorithm 1 of Stephens (1997) p. 800, an estimate; ĝ = {ĝi}ni=1 of g

can be obtained. A description of the ECR strategy via an iterative process is provided

in Algorithm 4.12, and in this case ntj,l = #{i : zti = j, ĝi = l}. Now we start with a bad

estimate ĝ and improve it via an iterative algorithm. The last iteration will be exactly

the original ECR algorithm but where the pivot was obtained in an alternative manner.

Algorithm 4.12 ECR iterative relabeling strategy 1

1: Initialize ρ1, . . . , ρN . {Usually set to the identity: ρt = {1, . . . , k} for all t}

2: For i = 1 to n, calculate ĝi = mode{ρ1(z1
i ), . . . , ρN (zNi )}. {estimating g}

3: For t = 1 to N , find ρt solving (4.8) with costs: ctl,j = ntj − ntj,l.

4: If an improvement in
∑N

t=1 L̂t has been achieved return to 2. Finish otherwise.

Note however, that neither in the original ECR nor in the iterative version the pivot
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ĝ will coincide with the final estimate for the single best clustering. An alternative that

will ensure this is provided in Algorithm 4.13. This algorithm will be computationally

demanding but will give the permutations, the single best clustering and the posterior

classification probabilities as an output.

Algorithm 4.13 ECR iterative relabeling strategy 2

1: Initialize ρ1, . . . , ρN . {Usually set to the identity: ρt = {1, . . . , k} for all t}

2: For i = 1 to n and j = 1 to k, calculate q̂i,j =
1

N

N∑
t=1

pti,ρt(j).

3: For i = 1 to n, set ĝi = j if q̂i,j = max
l=1...,k

{q̂i,l}. {estimating g}

4: For t = 1 to N , find ρt solving (4.8) with costs: ctl,j = ntj − ntj,l.

5: If an improvement in
∑N

t=1 L̂t has been achieved return to 2. Finish otherwise.

4.3 Using the data to undo the label switching

Our aim is to combine all the information about the clusters gathered by the latent

allocations, (2.2), and the data, to devise a simple loss function. Then, as with other

relabeling algorithms, to undo the label switching, we will find the permutation of the

indices that minimizes a loss.

The key point is that if the MCMC has converged, from iteration to iteration, the

labels of each cluster may change. But the clusters should be roughly the same. The

difference should be small enough for us to discover where a cluster of the data has

moved to. Hence, all that we need is to keep track of the k clusters throughout each

iteration of the sampler. For now, to explain our ideas, we will restrict our attention to

the univariate case. The multivariate problem is a trivial generalization and is explained

in the illustrations for multivariate data.
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4.3.1 A simple loss function

Let us assume that the center and the dispersion of the clusters within the data are

known: {m1, . . . ,mk} and {s1, . . . , sk}. These will be our pivot variables. To undo the

label switching we can find the permutation, ρt ∈ Pk for t = 1, . . . , N , that minimizes:

k∑
l=1

k∑
j=1

ntρt(j)

 ∑
{i:ρt(zti )=j}

(
yi −ml

sl

)2
 , (4.9)

where ntρt(j) = #{i : ρt(z
t
i) = j}. With this loss the costs in (4.8) will be given by

cl,j = nj
∑
{i:zi=j}

(
yi −ml

sl

)2

. (4.10)

If the clustering assumptions induced by (2.1) and (2.2) are met, once the MCMC has

converged, at each iteration of the sampler there must be k clusters identified by the

conditional relationship between yi and zti . Thus, a k-means type of diverging measure,

(4.9), will be able to keep track of each cluster. To measure deviations from the center of

each cluster, ml, we eliminate the effect of the scale, and as the number of observations

allocated within each cluster can be rather distinct, we make the divergences proportional

to the size of each group. These considerations improved the loss function greatly.

4.3.1.1 Means and standard deviations

There are different alternatives for measures of central tendency and dispersion for the

clusters, and here we derive algorithms based on the mean and standard deviation. Later

on in this Chapter we describe how to use more robust alternatives.

To estimate the means and standard deviations for each cluster we could use the

mixture parameters or functions of them, for example, in the case of the normal mixture

the obvious options are posterior means for the means and standard deviations of each

component, i.e. m̂j = E(µj |y) and ŝj = E(σj |y), for j = 1, . . . , k. However, there are

two problems with this approach. First, the algorithm would be restricted to mixtures

with a particular component’s distribution. Second, we would need to estimate these

iAnnotate User
Highlight
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posterior means from the MCMC output, and the parameters sampled via the MCMC

are random and can exhibit great amounts of variability depending on whether the

Markov chain traverses regions of high or low probability in the posterior distribution.

To solve these problems we will work with functions depending only on the data and the

latent allocations. The data is fixed, and there is only certain amount of variability that

subsets of it will admit. On the other hand, the distributional assumptions of the model

are contained in the clusters induced by the latent allocations.

With these ideas, to estimate the means and standard deviations of each cluster we

use posterior means for the sample mean and sample standard deviation:

m̂j = E(yj |y) and ŝj = E(sj |y), for j = 1, . . . , k, (4.11)

where yj =
1

nj

∑
{i:zi=j}

yi and s2
j =

1

nj − 1

∑
{i:zi=j}

(yi − yj)2.

Observe that quantities such as (4.11) are valid posterior means. To see this first let

Z = {1, . . . , k}n, and then for h : Rn ×Z × {1, . . . , k} → R, calculate

E(h(y, z, j)|y) =
∑
z∈Z

∫
Θ

∫
Ω
h(y, z, j)p(z,w,θ|y)dwdθ,

=
∑
z∈Z

h(y, z, j)p(z|y). (4.12)

Thus, for (4.11), the function h(y, z, j) will be given by yj and sj for the sample mean

and sample standard deviation, respectively.

The posterior means in (4.11), will be estimated using the MCMC output and cal-

culating:

ytj =
1

ntj

∑
{i:zti=j}

yi and sj
t =

 1

ntj − 1

∑
{i:zti=j}

(yi − ytj)2

1/2

.

Next section, specifically Algorithm 4.14 explains the technical details of ntj = 0 or 1.

4.3.2 The algorithm

As with the previous algorithms, to define the costs (4.10), a complete knowledge about

the pivot variables is assumed, in our case, the means and standard deviations of each
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group. We have two ways to proceed: via a recursive algorithm or using estimates. We

use the second approach simply because it is faster, but for a comprehensive explanation

we include both.

The idea to find estimates is as follows: first, we obtain initial estimates of our pivot

variables in one of the modes of the posterior distribution, in this case (4.11). If the

MCMC has converged, we choose the first set of allocations after the burn in period and

calculate our starting sample means and sample standard deviations with it. At this

point the MCMC should be traversing one of the k! modes of the posterior distribution,

and for our propose it is not important which particular mode this is. To move these

initial pivots closer to the mode of this particular mode of the posterior distribution, we

average the same estimates for each group over all the iterations of the MCMC algorithm:

preserving identifiability via (4.9). The final estimates will be close to the mode of one

of the modes of the posterior distribution, and we can use these as pivots to find the

permutations (4.7). A formal description of the strategy to find estimates is given in

Algorithm 4.14 (note that R = y(n) − y(1)).

Algorithm 4.14 Data based relabeling: finding estimates

1: For j = 1 to k, initialize nmj = 1, nsj = 1, m̂j = y(1) +R
(

j
k+1

)
and ŝj =

√
2R/k.

2: For t = 1 to N , find ρt solving (4.8) with costs: ctl,j = ntj
∑
{i:zti=j}

(
yi − m̂l

ŝl

)2

.

For j = 1 to k, update m̂j , ŝj , n
m
j and nsj

If ntρt(j) > 0⇒ m̂j = ((nmj − 1)m̂j + ytρt(j))/n
m
j and nmj = nmj + 1.

If ntρt(j) > 1⇒ ŝj = ((nsj − 1)̂sj + stρt(j))/n
s
j and nsj = nsj + 1.

A description of the Data relabeling via estimates is provided in Algorithm 4.15. We

have defined a two step procedure: in Algorithm 4.14 the aim is to find estimates for the

mean and standard deviation for each cluster. While in Algorithm 4.15 the interest lies

in the permutations ρt, for t = 1, . . . , N . It is important to say that several experiments
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were performed using Algorithm 4.14, to obtain the permutations directly, and in some

cases the results were as good as with the two step procedure. However, in general the

two step procedure was more accurate.

Algorithm 4.15 Data based relabeling: estimates strategy

1: Find estimates m̂j and ŝj for j = 1 to k.

2: For t = 1 to N , find ρt solving (4.8) with costs: ctl,j = ntj
∑
{i:zti=j}

(
yi − m̂l

ŝl

)2

.

The corresponding recursive algorithm follows directly from Algorithm 1 of Stephens

(1997), p. 800. A description of this strategy is given in Algorithm 4.16.

Algorithm 4.16 Data based relabeling: iterative strategy

1: Initialize ρ1, . . . , ρN . {Usually set to the identity: ρt = {1, . . . , k} for all t}

2: For j = 1 to k, calculate:

m̂j =
1

nm

N∑
t=1

ytρt(j) 1{n
t
ρt(j)

> 0} and ŝj =
1

ns

N∑
t=1

stρt(j) 1{n
t
ρt(j)

> 1},

where nm =
N∑
t=1

1{ntρt(j) > 0} and ns =
N∑
t=1

1{ntρt(j) > 1}.

3: For t = 1 to N , find ρt solving (4.8) with costs: ctl,j = ntj
∑
{i:zti=j}

(
yi − m̂l

ŝl

)2

.

4: If an improvement in
∑N

t=1 L̂t has been achieved return to 2. Finish otherwise.

4.3.3 Additional comments

In this section we describe the ideas under the definition of the costs (4.10) and possible

alternatives.

4.3.3.1 Main ideas

There are two important ideas under the definition of (4.10). First, it is easier to obtain

estimates (pivots) close to the mode of one of the modes of the posterior distribution

using general characteristics of the components such as location and dispersion, rather
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than via those related to individual observations such as classification probabilities or

allocations. If the algorithm has converged, we can obtain estimates for the location

and dispersion for the groups directly from the MCMC output: the relationship between

the observations and allocations is the key. Second, the observations are incorporated

directly within the loss, and not only via the MCMC output. Indeed, note that all the

quantities needed for the calculation of the costs, (4.10), are based on the data, while

the groups are indicated by the allocations. This should reduce the variability of the

costs and thus lead to a more stable and robust relabeling algorithm.

4.3.3.2 Extensions

Our costs (4.10) can be computed efficiently and in the examples that we have studied,

they have good performance. However, it is straightforward to derive different alterna-

tives; we can start by using robust measures of location and dispersion for the groups,

e.g. the median and median absolute deviation. Thus, in (4.11) we substitute (yj , sj) by

(medj ,madj). With this change, the costs (4.10) will be resistant to outliers. This will

be useful when the sampler visits the tails of the posterior distribution. To find (m̂j , ŝj),

for j = 1, . . . , k, in Algorithm 4.14, we would use

medtj = med
{i:zti=j}

(yi) and madtj = med
{i:zti=j}

(|yi −medtj |).

The calculation of these statistics will lead to a slower algorithm but providing accurate

component specific inference. Another alternative is to use in (4.8) the costs

cl,j = −
∑
{i:zi=j}

log {f(yi|θl)} ,

thus devising label switching algorithms for particular component’s distributions. The

idea again will be to find posterior estimates for θl via (4.12): using the data and the

allocations. Under this setting, for a mixture of normals, the costs will be given by

cl,j =
nj
2

log(2πσ2
l ) +

1

2

∑
{i:zi=j}

(
yi − µl
σl

)2

. (4.13)
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To estimate µl and σl we can use again (4.11). Importantly, connecting all the elements

of the costs directly with the data.

4.4 Comparisons

In this section, using simulated and real data sets, we compare the performance of the

relabeling algorithms: Data, ECR and KL. First, all comparisons are carried out under

a univariate setting. Then we move to the multivariate case.

4.4.1 Univariate mixtures

For our first comparison, we take samples from three models involving mixtures:

Model 1 : 0.4N(y|0.63, 0.00032) + 0.6N(y|0.65, 0.00016).

Model 2 : 0.25N(y| − 3, 1) + 0.25N(y| − 1, 1) + 0.25N(y|1, 1) + 0.25N(y|3, 1).

Model 3 : 0.20N(y|19, 5) + 0.20N(y|19, 1) + 0.25N(y|23, 1)

+ 0.20N(y|29, 0.5) + 0.15N(y|33, 2).

We generated samples of size: n = 1000, n = 200 and n = 600, from Models 1, 2

and 3, respectively. To improve comparability, the samples were not randomly drawn.

We evaluated the quantile function of each mixture on a grid in (0, 1), and a friendly

implementation of this can be found in the package nor1mix of R, see Mächler (2011).

The idea is that under non-informative priors, inference is as good as the sample and

since the objective is to compare our proposal with other alternatives, using as reference

the true values is the best way to proceed. This type of data has been used before

by Nobile and Fearnside (2007) to illustrate the performance of their trans-dimensional

MCMC for mixture models.

Model 1 was designed to exhibit the same characteristics as the crab data which was

first analyzed by Pearson (1894), and comprises the measurements of the ratio of forehead

to body length of 1000 crabs. Model 2 is a mixture of symmetric and poorly separated
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components, and Model 3 has been used by Papastamoulis and Iliopoulos (2010) to

demonstrate the performance of the ECR algorithm. All mixtures have overlapping

components and present challenging scenarios for any relabeling algorithm.

For the real data we have chosen the acidity and enzyme data. The acidity data set

concerns the log scale of the acidity index measured in a sample of 155 lakes in north-

central Wisconsin. The enzyme data set concerns the distribution of enzymatic activity

in the blood of an enzyme involved in the metabolism of a carcinogenic substance, among

a group of 245 unrelated individuals. These data sets have been analyzed by Richardson

and Green (1997).

To compare the effect on inference related to the choice of MCMC strategy we will

compare posterior mean estimates, obtained via the standard Gibbs sampler, with those

obtained via its reversible jump extension.

4.4.1.1 Relabeling algorithms, Gibbs sampler

For Models 1 to 3, we work with the Gibbs sampler for normal mixtures described by

Richardson and Green (1997), along with their data based priors. See Section 2.2.2,

for the Gibbs sampler, and Section 2.3.2.1, for the specification of the prior constants.

In each case we generated an MCMC with 60,000 iterations, throwing away the fist

30,000 as a burn-in period. Then, with the output of the same MCMC, we undo the

label switching using each algorithm: Data, ECR and KL. Thus, for each case, posterior

mean estimates for the weights, means and variances are calculated. To measure the

accuracy of the point estimates, we determined the relative error:

Rel. Error =

k∑
j=1

∣∣∣∣E(gm(wj , θj)|y)− gm(wj , θj)

gm(wj , θj)

∣∣∣∣ ,
where the posterior means for the functions g1 (wj , θj) = wj and g2 (wj , θj) = θj will be

estimated via (4.5). To have a fair comparison, this was repeated 100 times.

In Table 4.2 we present the first comparison with the data set from Model 1. In this

case, looking at the column of the average relative errors, it is clear that Data and KL
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algorithms are more accurate than the ECR strategy. There is no difference in precision

between Data and KL. In Figures 4.1 a), b) and c) we display the traces for the means

(just 10,000 iterations) generated after the algorithms Data, ECR and KL, respectively,

were used to undo the label switching. From these graphics, it is clear that while the

Data and KL strategies introduce the constraint µ1 < µ2, over all 10,000 iterations,

the ECR relabeling introduced the same constraint on iterations where regions of high

probability of the posterior distribution were explored. Hence, as Papastamoulis and

Iliopoulos (2010) proposed more alternatives to obtain good vectors of allocations, we

changed gMAP for the true single best clustering (there is no better alternative) on the

ECR algorithm, and the results were then the same as with the Data and KL strategies.

To test convergence problems we performed individual runs of 500,000 iterations (taking

400,000 as a burn in period), but the results calculated via the ECR algorithm and

gMAP were similar to those presented in Table 4.2 and Figure 4.1.

j 1 2 Average Std.Dev

True wj 0.4 0.6 Rel. Error Rel. Error

Data E(wj |y) 0.349 0.651 0.214 0.064

ECR E(wj |y) 0.332 0.668 0.283 0.050

KL E(wj |y) 0.349 0.651 0.214 0.064

True µj 0.63 0.65

Data E(µj |y) 0.627 0.649 0.006 0.001

ECR E(µj |y) 0.628 0.648 0.006 0.001

KL E(µj |y) 0.627 0.649 0.006 0.001

True σ2
j 0.00032 0.00016

Data E(σ2
j |y) 0.000277 0.000165 0.166 0.033

ECR E(σ2
j |y) 0.000262 0.000180 0.308 0.035

KL E(σ2
j |y) 0.000277 0.000165 0.166 0.033

Table 4.2: Average of posterior mean estimates and relative errors across one hundred

experiments for the data set from Model 1.



Chapter 4. Label Switching in Finite Mixture Models 84

 

0.61

0.63

0.65

a) Gibbs − Data

 

0.61

0.63

0.65

b) Gibbs − ECR

 

0.61

0.63

0.65

c) Gibbs − KL
 

0.61

0.63

0.65

d) RJ − Data

 

0.61

0.63

0.65

e) RJ − ECR

 

0.61

0.63

0.65

f) RJ − KL

Figure 4.1: Trace for the means, data from Model 1: Gibbs sampler (upper row) and

reversible jump.

For our second comparison we use the data set from Model 2, and the results are

shown in Table 4.3. In this case we have a symmetric mixture of four components

and where the only difference between components is the mean. From average relative

errors for the weights and means, in this case, we see that Data relabeling is far more

accurate than either ECR and KL strategies. Estimates of variances are equally bad

across the three algorithms. If we look at the scaled components predictive and single

best clustering, presented in Figure 4.2, we observe again that Data relabeling performs

much better than the alternatives. True scaled densities were plotted via wjN(y|µj , σ2
j )

and the true single best clustering was plotted via (yi, ui), for i = 1, . . . , n where ui ∼i.i.d.

U(ε1, ε2), then the single best clustering was used as the labels for the dots (the true single

best clustering was determined using equation (4.1)). Here we can see that the single

best clustering achieved with the Data relabeling, Figure 4.2 d), is almost identical to the

one calculated with the true values, Figure 4.2 a). For curiosity, we used the true single

best clustering instead of gMAP on the ECR algorithm and the results shown in Table

4.3 with the Data relabeling remain the more accurate. To test convergence problems,
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we ran the Gibbs sampler for 1,000,000 iterations discarding the first 900,000, and the

results were almost identical to those described above. Our insistence in maintaining a

maximum of 100,000 iterations for the analysis lies in the storage requirements for the

classification probabilities and the time needed by the KL algorithm to converge (in this

case approx 16 min). See Section 4.4.3 for more about the storage requirements and

Table 4.5 for a comparison of system times.

j 1 2 3 4 Average Std.Dev

True wj 0.25 0.25 0.25 .25 Rel. Error Rel. Error

Data E(wj |y) 0.224 0.277 0.273 0.226 0.442 0.089

ECR E(wj |y) 0.381 0.122 0.122 0.375 1.993 0.048

KL E(wj |y) 0.328 0.168 0.176 0.328 1.587 0.281

True µj -3 -1 1 3

Data E(µj |y) -2.191 -0.886 0.879 2.202 0.776 0.065

ECR E(µj |y) -1.898 -0.480 0.453 1.930 1.801 0.507

KL E(µj |y) -2.165 -0.406 0.405 2.171 2.064 0.455

True σ2
j 1 1 1 1

Data E(σ2
j |y) 1.916 2.734 2.729 1.910 5.289 0.085

ECR E(σ2
j |y) 2.270 2.388 2.396 2.235 5.289 0.085

KL E(σ2
j |y) 2.039 2.612 2.606 2.031 5.289 0.085

Table 4.3: Average of posterior mean estimates and relative errors across one hundred

experiments for the data set from Model 2.

In Model 3 we have three separated components: components three four and five.

Two components have the same mean and weight: components one and two. But com-

ponent one has a larger variance than component two. The results are in Table 4.4.

Here, posterior mean estimates for the separated components are acceptable, but for

components one and two we observe difficulties. In this case, posterior mean estimates

for the weights calculated via our relabeling algorithm are more accurate. For the other

variables, the ECR algorithm performs marginally better.
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Figure 4.2: True, estimated scaled densities and single best clustering for Model 2.

j 1 2 3 4 5 Average Std.Dev

True wj 0.2 0.2 0.25 0.2 0.15 Rel. Error Rel. Error

Data E(wj |y) 0.218 0.177 0.256 0.2 0.149 0.818 0.230

ECR E(wj |y) 0.097 0.298 0.256 0.2 0.149 1.044 0.051

KL E(wj |y) 0.101 0.294 0.256 0.2 0.149 1.061 0.050

True µj 19 19 23 29 33

Data E(µj |y) 18.833 18.824 22.988 29.011 33.003 0.047 0.013

ECR E(µj |y) 18.590 19.067 22.988 29.011 33.004 0.029 0.014

KL E(µj |y) 18.569 19.089 22.988 29.011 33.003 0.031 0.014

True σ2
j 5 1 1 0.5 2

Data E(σ2
j |y) 2.654 2.145 1.041 0.546 1.988 1.754 0.253

ECR E(σ2
j |y) 2.695 2.105 1.042 0.546 1.987 1.706 0.093

KL E(σ2
j |y) 2.609 2.191 1.041 0.546 1.988 1.808 0.106

Table 4.4: Average of posterior mean estimates and relative errors across one hundred

experiments for the data set of Model 3.
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For the acidity and enzyme data we ran the Gibbs sampler for normal mixtures

described by Richardson and Green (1997), along with their data based priors. Here,

assuming k = 3 and k = 4, respectively, we generated 200,000 iterations throwing away

the fist 100,000 as a burn-in period. Then, with the output of the same MCMC, we

undo the label switching using each algorithm: Data, ECR and KL. We display in

Figure 4.3, estimated scaled densities and single best clustering. For the acidity data

we see in Figure 4.3 a), b) and c) that the single best clustering produced with the

three algorithms is rather similar, however there are differences in the estimated scaled

densities, see group two (in red). For the enzyme data, Figure 4.3 d), e) and f), we note

differences in the single best clustering produced with the three algorithms, see group

four (in purple). Also, there are differences in the estimates for the scaled densities for

the same component.

In Table 4.5 we present the recorded average time required to undo the label switching

for each algorithm. For the Data relabeling we are differentiating between the registered

time to find estimates, Algorithm 4.14, and the actual relabeling time, Algorithm 4.15.

For the ECR strategy the time required for the calculation of the log posterior distri-

bution and the time to find and extract the MAP estimate was not recorded. Given

the order of the system times displayed in Table 4.5, seconds, we believe that if these

calculations are considered, Data and ECR relabeling should be equally fast. We remark

that this is for the univariate case.

4.4.1.2 Relabeling algorithms, reversible jump

Here, the results obtained in the last section for Models 1 to 3 are compared with

estimates obtained via the reversible jump sampler, for normal mixtures, described by

Richardson and Green (1997) and their data based priors. See Section 2.3.2. First, to

obtain convergence, we generated 500,000 iterations and kept the last 100,000 for Model

1, and 200,000 for Models 2 and 3. Then the output relevant to a given k was extracted:
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Log acidity index
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c) KL
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Enzymatic activity in the blood

d) Data
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f) KL
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Figure 4.3: Estimated scaled densities and single best clustering for the acidity (upper

row) and enzyme data.

Data Set k n N Data Find Est. Data Relabeling ECR KL

Model 1 2 1000 30,000 4.855 s 4.919 s 4.853 s 1.12 min

Model 2 4 200 30,000 1.053 s 1.088 s 1.111 s 2.66 min

Model 3 5 600 30,000 3.012 s 3.020 s 2.992 s 4.45 min

Acidity 3 155 100,000 3.35 s 3.56 s 3.67 s 1.85 min

Enzyme 4 245 100,000 5.412 s 5.61 s 5.541 s 7.03 min

Table 4.5: Average system time to undo the label switching across one hundred experi-

ments (for the acidity and enzyme data only one experiment was performed).
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k = 2, 4 and 5 for the data sets of Model 1, 2 and 3, respectively. Finally, after relabeling

the output, posterior mean estimates were calculated. In this case, because reversible

jump is computationally more expensive than the Gibbs sampler, we did not carry out

100 experiments.

A remarkable difference between the two samplers is how they explore the support

of the posterior distribution. The reversible jump sampler mixes better, and this can

clearly be seen in Figure 4.1 where traces for the means for the data set from Model 1

are displayed, for only 10,000 iterations. Graphics d), e) and f) are from the reversible

jump’s output and undoing the label switching using the Data, ECR and KL algorithms,

respectively. Graphics a), b) and c) are the corresponding traces generated with the

output of the Gibbs sampler.

For Model 1, with reversible jump, we did not observe major improvements in accu-

racy and all the estimates were very close to those shown in Table 4.2.

For the data set from Model 2, we observed an improvement in the accuracy for the

estimation of the weights. For example, with the Reversible Jump and Data relabeling,

we achieved a relative error of 0.269, while the average relative error via the Gibbs

sampler was 0.442, with a standard deviation of just 0.089. Similar improvements were

obtained with the ECR and KL strategies. Curiously, estimates for the means and

variances went in the opposite direction. In the case of the Data relabeling, with the

Gibbs sampler, we obtained an average relative error of 0.776 and a standard deviation

of 0.065, and via reversible jump a relative error of 0.923 was recorded.

For Model 3 we observed again an improvement in the estimation of the weights.

This time it happened just with the the Data relabeling: from an average relative error

of 0.818 (and a standard deviation of 0.230) it went to 0.455. All the other estimates

were of the same order as those displayed in Table 4.4.

To conclude this section, it is important to say that the computational cost of the

Reversible Jump sampler is far greater than that of the Gibbs sampler. For example,
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to obtain the results for Model 1, it took almost nine minutes to run the MCMC and a

further 4 minutes to extract and calculate the classification probabilities for k = 2. For

the standard Gibbs sampler, less that 2 minutes were needed overall. Hence, given the

evidence observed in our experiments, we see no reason to use the a trans-dimensional

MCMC rather than the standard Gibbs sampler.

4.4.2 Multivariate normal mixtures

Here we extend the loss function (4.9) to allow for multivariate data. In this case

y = {{yi,r}pr=1}ni=1, and hence each cluster has p means and p standard deviations:

mj = {mj,r}pr=1 and sj = {sj,r}pr=1. With this consideration, the loss function (4.9)

becomes
k∑
l=1

k∑
j=1

ntρt(j)
∑

{i:ρt(zti )=j}

{
p∑
r=1

(
yi,r −ml,r

sl,r

)2
}
, (4.14)

and thus the costs become

ctl,j = ntj
∑
{i:zti=j}

{
p∑
r=1

(
yi,r −ml,r

sl,r

)2
}
.

To illustrate the performance of our methodology in a multivariate setting, the Gibbs

sampler for multivariate normals described in Stephens (1997), with default priors, was

implemented. We simulated n = 200 observations from the distribution

4∑
j=1

wj N2(µj ,Σj)

with actual values shown in Table 4.6 (note that Σ = (Σ11,Σ12 = Σ21,Σ22)). This

mixture model has been considered by Papastamoulis and Iliopoulos (2010). In our

experiments we took k = 4. For the analysis we kept the last 30,000 iterations from a

chain of 100,000 iterations.

In Figure 4.4 a) we display the level curves calculated via the true model along with

the true single best clustering. In Figures 4.4 b), c) and d) we display level curves of

the plug-in density estimates and single best clustering generated via ECR, Data and

KL algorithms, respectively. In this case the results obtained with each algorithm are
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j wj µj Σj

1 0.25 (4.5, -2.5) (0.5, -0.25, 0.5)

2 0.25 (-3.0, 4.0) (0.5, -0.25, 0.5)

3 0.25 (6.5, 7.0) (4, 2.5, 4)

4 0.25 (7.0, -3.0) (4, 2.5, 9)

Table 4.6: Parameters for the simulated data.

identical. We repeated the experiment several times and there was no difference between

the estimates generated via the three algorithms.
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a) True
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b) Data
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c) ECR
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c) KL

Figure 4.4: True, estimated scaled densities and single best clustering.

The time required to find estimates for the Data algorithm was 1.352 seconds, and

then it took a further 1.525 seconds to undo the label switching. With the ECR and

KL strategies it took 1.457 and 30.319 seconds, respectively, to undo the label switching.

Again, we did not measure the time needed to find the MAP estimate for the ECR

relabeling.
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4.4.3 Computations and storage requirements

All the experiments were performed in a Dell Precision M4400 (processor Intel core 2

Duo at 2.26 GHz) running Linux openSUSE 12.1. We coded our approach in C and

used the .C interface to R to have a friendly data input interface, see Peng and Leeuw

(2002) for a good introduction. The analysis and graphics were done in R. To solve

(4.8) efficiently via the Hungarian method we borrowed the function solve LSAP from

the library clue of R whose source code is written in C, see Hornik (2012). Thus

allowing us to incorporate it into our own C code directly. The reported CPU times

were measured using the function system.time of R.

One of the main criticisms of KL relabeling is its storage requirements. In our

implementation, the classification probabilities were stored in a text file directly, at each

iteration of the Gibbs sampler, and we worked with 16 digits of precision. Then our

KL implementation loaded all the matrices of classification probabilities from this text

file. With this approach the memory used to store one classification probability in a text

file was 18 bytes (0. + 16 digits), then 2 bytes to print a space after each classification

probability (“\t”) and 1 byte to print in the next row of the text file (“\n”). Thus, the

text file size to store N matrices of classification probabilities of dimension n× k was of

TFScp(N,n, k) = (18kn+ 2kn+ n)N = n(20k + 1)N bytes. (4.15)

On the other hand, the text file to store N allocation vectors of dimensions 1×N used

by Data and ECR relabelings was

TFSalloc(N,n) = (3n+ 1)N bytes. (4.16)

This follows since 1 byte is needed to store one allocation, 2 bytes to print a space after

each allocation, and 1 byte to print in the next row of the text file for each allocation

vector.

Then, with the precision considered, we see that the text file size to store the clas-

sification probabilities is approximately 7k times larger than the one used to store the
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vectors of allocations. We can use (4.15) and (4.16) to work out the size of the text files

used in our experiments. These are displayed in Table 4.7. Note that 1 MB = 10242

bytes and 1 GB = 10243 bytes.

Data Set k n N TFScp TFSalloc

Model 1 2 1000 30,000 1.1 GB 85.9 MB

Model 2 4 200 30,000 463.5 MB 17.2 MB

Model 3 5 600 30,000 1.7 GB 51.5 MB

Table 4.7: Text file size for the classification probabilities and latent allocations.

The size of the text files shown in Table 4.7 are easily handled by modern day

computers, but to test our every day laptop we increased N gradually running the

algorithms with the data set from Model 3. As our laptop’s processor is of 32 bytes,

we experienced problems to store text files larger than 2 GB, however this was easily

solved enabling the large file support in Linux, see Jaeger (2005). When N = 110, 000

was reached, and hence 6.2 GB of size for the classification probabilities text file, the

KL algorithm crashed: when loading all the matrices of classification probabilities. If

the aim when performing component specific inference is classification analysis, then the

N matrices of classification probabilities sampled throughout the MCMC are needed.

If the Data relabeling is used, we can store all the classification probabilities directly

into a text file, as described before, and then calculate (4.3) reading just one matrix of

classification probabilities at a time. In our experiments text file sizes of classification

probabilities of 15 GB of memory were handled without any problem. A possible solution

for the KL strategy to handle larger text files could be to read one matrix of classification

probabilities at a time and return the file pointer to the beginning of the text file, at the

end of each iteration. However, this would slow the KL algorithm even more.
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4.5 Discussion

4.5.1 Conclusions

We have described the key ideas for a deterministic relabeling algorithm and from it have

derived an easy and efficient solution to the label switching problem. Our proposed solu-

tion, the Data relabeling, lies in the meaning of the relationship between the allocation

variables (2.2) and the observations. If the sampler has converged, observations being

allocated together should remain roughly the same throughout iterations of an MCMC

sampler. Hence, using a k-means type of diverging measure, (4.9), we are able to keep

track of each cluster.

The relabeling used to make component specific inference is completely determined

by the loss function. Thus, this is the most important part of a relabeling algorithm. We

have incorporated the observations directly within the loss function, while alternative

algorithms only use this information indirectly via the MCMC output, which has been

estimated from the observations. This direct connection to the data is an appealing

characteristic of our idea. As a consequence we have obtained accurate posterior mean

estimates, acceptable scaled predictive densities and good single best clusterings.

To implement the Data relabeling algorithm all that is needed are the observations

and the latent allocations. There is no need to embed additional calculations within

the MCMC sampler, as with the ECR strategy. With this, we first find estimates for

the means and standard deviations of each cluster and then a relabeling that recovers

identifiability for the mixture components. We stress that care is needed when finding

estimates. It could appear that a fast solution is the MAP estimate. However, in

some cases it fails to completely isolate one of the symmetric modes of the posterior

distribution. This was seen in our experiments when the ECR was used to analyse a

simulated version of the Crab data.

Our strategy does not remain the same if the dimension of the data changes. However,
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the modification needed to extend the algorithm to a multivariate framework is a simple

loop, see (4.9) and (4.14).

A lack of label switching in the standard Gibbs sampler has been perceived as a

convergence problem. However, in our comparison of estimates among samplers, we saw

no evidence to support this idea. At most, in some cases, we observed that estimates for

the weights were more accurate when the reversible jump sampler was used. Nevertheless,

this improvement was not preserved for the remaining parameters and hence we see little

motivation to search for samplers more complicated than the standard Gibbs sampler.

4.5.2 Future Work

Our relabeling algorithm assumes there is no genuine multimodality (as KL and ECR

strategies do). Recent work done by Chopin, Lelièvre, and Stoltz (2012) proposes a

method to enhance the sampling of MCMC strategies, and efficiently exploring symmetric

and genuine modes of a univariate normal mixture model (this is a clear improvement

over previous non-trivial samplers designed with that porpoise). Therefore, it would

be of interest to compare the performance of the three algorithms under this context,

and determine if the use of such sampler improves the accuracy of the estimates or not.

Further, we noted that the classic example where genuine multimodality appears is when

fitting the galaxy data with a mixture of three Student’s t-distributions, t4, (see Stephens

(1997) p. 59 and Papastamoulis and Iliopoulos (2010)). However, when the galaxy data

is fitted with a mixture of three normal distributions, then there is no strong evidence

of genuine multimodality. Hence, in this case, the presence of genuine multimodality

is model dependent, and it would be important to investigate if (in general) genuine

multimodality is a symptom of model inadequacy or at least the causes for its appearance.

Label switching can be considered under a general missing data model framework

that includes as special cases finite mixtures, hidden Markov models, and Markov random

fields, see Papastamoulis and Iliopoulos (2011). In this thesis we restrict our attention to
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finite mixtures, however, the aim is to extend our ideas to the general case. An immediate

application under the general setting is the mixture of Dirichlet process (MDP) model,

as discussed in Chapter 3. In this setting, to deal with an infinite measure, there are

two alternative ideas: marginal and conditional methods. If the Dirichlet process is

integrated out via the so called marginal algorithms, see Section 3.2.1, the labels of

the clusters become unidentifiable, see Papaspiliopoulos and Roberts (2008). For the

conditional algorithms, see Section 3.2.2, the weights of the Dirichlet process are only

weakly identifiable, thus there is label switching. Note that to improve the mixing

properties of the sampler label switching moves are introduced to the MCMC algorithm,

see Section 3.2.2.4. In both cases, to recover identifiability we could proceed as with

reversible jump, extracting the MCMC output relevant to a given k and using the Data

relabeling.



Chapter 5

Nonparametric Mixture Modeling

with Unimodal Kernels

As discussed in Chapter 1 a common theme in mixture models is the use of the normal

distribution as the “benchmark” components distribution. However, if a cluster is skewed

or heavy tailed, then the normal distribution will be inefficient and many may be needed

to model a single cluster. In this Chapter, we present an attempt to solve this problem.

The aim is to ensure the number of clusters within the data coincides with the estimate of

the number of components. With this objective, first, via the MDP model we introduce

a new family of nonparametric unimodal distributions, which has large support over

the space of unimodal distributions. Then, we use this unimodal distribution as the

components distribution in a finite mixture model, where each part of the model has

a proper meaning, and k is modeled explicitly. Hence, given k, the model is a finite

mixture of k unimodal densities, each of which is modeled nonparametrically.

Much effort needs to be dedicated to the MCMC sampler. In fact, we derive a

hybrid MCMC strategy, see Section A.4.4. There are three key points here. First, the

introduction of some latent allocation variables (as with every mixture model). Second,

the slice sampling ideas of Kalli, Griffin, and Walker (2011) to truncate the number of

97
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variables to a finite number, see Section 3.2.2. Third, following Godsill (2001), a trans-

dimensional step is devised, for an entire stochastic process, writing a joint distribution

on the product space of candidate models and performing a Metropolis-Hastings in the

usual way, see Section 2.3. To make inference for individual components and cluster

analysis the well known problem of label switching must be addressed. We use our

Data relabeling algorithm, to “undo” the label switching and recover identifiability of

the mixture parameters, see Section 4.3.

Hence, this Chapter brings together the three previous Chapters. We will work

under a finite mixture modelling setting, Chapter 2. The MDP model will be used for

its original purpose, i.e. to define a flexible random density, Chapter 3, and to deal with

the label switching problem we will use our relabeling algorithm, Chapter 4.

5.1 The model

The model for the data will be a finite mixture model with k components, and k is

assumed unknown, written as:

fG(y|w,λ,µ, k) =
k∑
j=1

wj fGj (y|µj , λj), (5.1)

with w = {wj}kj=1, λ = {λj}kj=1,µ = {µj}kj=1 and G = {Gj}kj=1. The weights, w,

are non-negative and sum to one; and for each j, fGj (y|µj , λj) is a univariate unimodal

distribution which can be fully characterized by a distribution function Gj , and also with

the parameter λj , which determines the asymmetry of fGj , and µj , which determines

the location of fGj . All the other aspects of fGj can be determined by the moments of

the distribution Gj .

To begin, we describe the family of univariate unimodal density functions which will

serve as the components of the mixture model (5.1).
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5.1.1 Unimodal kernels

We start with the MDP model, Lo (1984), and chose a Dirichlet process prior, DP(c,G0),

over G as described in Section 3.2:

fG(y) =

∫
Θ
k(y|θ)G(dθ) =

∞∑
s=1

wsk(y|θs). (5.2)

If the kernel k(y|µ, σ2) = N(y|µ, σ2) is taken, then (5.2) defines a multi-modal distribu-

tion, which is not what we want. On the other hand, if

k(y|θ, µ) = U(y|µ− θ, µ+ θ), with θ ∈ R+,

then it is well known that scale mixtures of uniforms coincide with the class of unimodal

and symmetric distributions, p. 158 of Feller (1971):

fG(y|µ) =

∫ ∞
0

U(y|µ− θ, µ+ θ)G(dθ), (5.3)

=
∞∑
s=1

ws U(y|µ− θs, µ+ θs),

where U(y|a, b) is the uniform density on (a, b).

In this case fG(y|µ) is a symmetric random density with mode µ, and where its

variance and kurtosis are determined by G.

Brunner and Lo (1989) and Quintana, Steel, and Ferreira (2009), among others, have

worked with (5.3). But in our case, we want to extend (5.3) to include asymmetry. A

possible option is to use the proposal of Kottas and Gelfand (2001) where they model

asymmetry using two independent Dirichlet processes G1 and G2, i.e.

fG1,G2(y|µ) =
1

2

{∫
1

θ
1 (y)

(µ−θ,µ)G1(dθ) +

∫
1

θ
1 (y)

[µ,µ+θ)
G2(dθ)

}
.

In this case, the tails of the distribution are being modeled independently of each other,

which could lead to a large discontinuity at the mode. Also, if it is close to symmetric,

then the model is inefficient. Instead, following the ideas of Fernandez and Steel (1998),
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we can return to (5.3) and incorporate an asymmetry parameter λ ∈ R via

fG(y|λ, µ) =

∫
R+

U
(
y|µ− θe−λ, µ+ θeλ

)
G(dθ),

=
∞∑
s=1

ws U
(
y|µ− θse−λ, µ+ θse

λ
)
. (5.4)

Then (5.4) defines a random unimodal density determined by (λ, µ,G); µ is the location

parameter; λ the asymmetry parameter and G a distribution function. Characteristics

such as variance, kurtosis, tails and higher moments are determined by G.

We do not claim that the support of (5.4) includes all the unimodal densities on the

real line. But it certainly covers all symmetric unimodal distributions and a large class,

sufficiently large in our estimation, of asymmetric distributions.

Then we will use (5.4) as the components distribution for the mixture model (5.1).

5.1.1.1 Prior predictive

It is important to understand what kind of shapes the unimodal distribution, (5.4), can

achieve and how the parameters λ and µ and the moments of G influence it. With this

aim, setting G0(θ|α, β) as a gamma distribution, written as Ga(θ|α, β), (parametrized

such that E(θ) = α/β), and denoting P as the Dirichlet process measure with base

distribution G0 and concentration parameter c > 0, we know that G ∼P (from Section

3.1.2). Then the prior predictive or prior guess can be calculated by integrating out G

from (5.4) to yield

E (fG(y|λ, µ)) =

∫
Ω
fG(y|λ, µ)P(dG), (5.5)

=

∫
Ω

[∫
R+

k(y|θ, λ, µ)G(dθ)

]
P(dG),

=

∫
R+

k(y|θ, λ, µ)

[∫
Ω
G(dθ)P(dG)

]
,

=
sech(λ)

2

∫
R+

1

θ
1 (y)

(µ−θe−λ,µ+θeλ)
G0(dθ|α, β),

=
β sech(λ)

2(α− 1)
(1−G0(a(y)|α− 1, β)) ,

with a(y) = max
{

(µ− y)eλ, (y − µ)e−λ
}

.
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Note that with the choice of G0 for k(y|θ, λ, µ) to be a valid kernel it is required

that α > 1. For (5.5) to be a differentiable (smooth) function, α > 2 is needed, and if

1 < α ≤ 2 we will have a continuous function that is not differentiable at y = µ. See

Appendix 5.A for details.

Hence, (5.5) is a four parameter density. But the important point here is to under-

stand how λ, µ, α and β influence the prior predictive (5.5) and ultimately (5.4). To

clarify this point some graphics have been displayed in Figure 5.1. To have a measure

of comparison, a plot of the standard normal distribution has been included.

We have that µ deals with the location; λ the skewness and α and β the variance and

kurtosis. This can be seen for α in graphics: a), b) and d) and for λ in graphics: c), d),

e) and f). From these graphics is clear that α determines the degree of kurtosis. Note

in graphs e) and f) how large values of lambda (|λ| > 1) can also impact the variance.

That β influences variance can be seen from graphs b) and c). Finally µ only influences

the location; see graphs d) and f).

The best approximation to the normal distribution with the prior predictive is shown

in graphic c), a zoom to the right tails, between 3 and 6, shows that the tails of the prior

guess are slightly heavier than those of the standard normal distribution.

On studying the prior predictive (5.5) we see that contrary to the realizations of

fG(y|λ, µ) it is a continuous density. We observed how the random distribution G along

with the parameters λ and µ influence the prior guess. This information is important

because one of the aims is to approximate the posterior predictive E(fG(y|λ, µ)|y) once

a sample from a population y = {yi}ni=1 has been observed. Thus the study of the prior

predictive gives us an insight on the representations or shapes that the posterior pre-

dictive can achieve and how (λ, µ,G) (given the observations) can influence it. Further,

since we will be working with a new distribution, this knowledge can be helpful to set

the values of the unspecified constants for the priors of the model.

Later on in this Chapter we will evaluate the performance of model (5.4) by fitting
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data sets from different unimodal distributions.
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Figure 5.1: Influence of λ, µ, α and β on the prior guess.

5.1.2 Mixtures of unimodal kernels

We now write the model (5.1) as

fG(y|w,λ,µ, k) =
k∑
j=1

wj

∞∑
s=1

wjs U

(
y|µj − θjse−λj , µj + θjse

λj

)
. (5.6)

In (5.6) there are no assumptions about the shape of the components, the only assump-

tion is that of unimodality. Therefore, k means something explicit here: the number of

clusters modeled by a unimodal density.

5.1.2.1 Allocation variables

For the mixture of unimodal distributions we have two types of weights and therefore

we will need two sets of allocation variables. Thus a joint (zi, di) of latent allocation

variables needs to be defined. Then (zi = j, di = s) will indicate that the observation yi
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has been drawn from the component j of the finite mixture (j ∈ {1, . . . , k}) and from

the s component of the infinite mixture for the unimodal distribution. Note that, a

priori, (zi, di) are drawn independently with distributions p(zi = j, di = s) = wjwjs, for

j = 1, . . . , k and s = 1, 2, . . .. Hence, given the values of (zi, di), the observations are

sampled from their respective components;

fG(yi|zi, di,λ,µ) = U

(
yi|µzi − θzidie

−λzi , µzi + θzidie
λzi

)
.

Summing out the (zi, di) we get back to (5.6).

These are exactly the same ideas outlined in Section 2.1 and Section 3.2.2, for the

finite and infinite mixtures respectively. To sample from the full conditional of the

allocation variables it will be necessary to work with

p(zi = j, di = s| · · · ) ∝ wjwjs U

(
y|µj − θjse−λj , µj + θjse

λj

)
, (5.7)

for j = 1, . . . , k and s = 1, 2, . . .. This cannot be sampled directly due to the infinite

choice of s, and we will use the ideas described by Kalli, Griffin, and Walker (2011) to

deal with this problem, see Section 3.2.2.

5.2 MCMC: hybrid strategy

Here we describe how to sample from the posterior distribution of model (5.6). First, in

Section 5.2.1, the case for a known number of components is outlined and then the case

for an unknown number of components (i.e. k ∈ {1, 2, . . .}) is described in Section 2.3.

5.2.1 Known number of components

As described in Chapter 2, to tackle the problem for an unknown number of components

with model (5.6) is difficult. It is better to describe how to sample the model with k

fixed and then we can proceed to add the extension of a moving k.
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5.2.1.1 Slice sampler for infinite mixtures

We will use slice sampler ideas to sample from (5.7), see Section 3.2.2. The idea is to

add for every di a slice variable ui such that

p(zi, di, ui| · · · ) ∝ wziwzidi U(ui|0, ξdi) U

(
yi|µzi − θzidie

−λzi , µzi + θzidie
λzi

)
(5.8)

with ξl any positive and decreasing function in l. It is clear that integrating out the (ui)

we get back to the original distribution. The purpose of the (ui) is to force each di to

be from a finite set. This can be seen for example by setting ξd = e−d, which is the form

that we use in this Chapter. Then, from (5.8),

ui ∼ U(ui|0, e−di) ⇒ ui < e−di ⇔ di < − log(ui),

so if Ni = b− log(ui)c (where bac is the closest integer to a less than or equal to a) it

follows that for i = 1, 2, . . . , n

di ≤ Ni ≤ − log(ui) ⇒ di ∈ {1, 2, . . . , Ni} .

Hence, to sample from p(zi, di, ui| · · · ) we have the Gibbs sampler

ui ∼ p(ui|di),

(zi = j, di = s) ∼ p(zi = j, di = s|ui, · · · ),

with the (ui) as uniform, i.e. p(ui|di) = U
(
ui|0, e−di

)
, and the allocations as

p(zi = j, di = s|ui, · · · ) ∝ wjwjses U

(
yi|µj − θjse−λj , µj + θjse

λj

)
where j ∈ {1, . . . , k} and s ∈ {1, . . . , Ni}.

If we define

N = max
i=1,...,n

{Ni} ⇒ ∀ i, di ∈ {1, . . . , N}. (5.9)

The variables that depend on (zi, di) will be matrices: {{wjs}Ns=1}kj=1 and {{θjs}Ns=1}kj=1.
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With the inclusion of these latent variables the full posterior distribution will be

proportional to

n∏
i=1

wziwzidi U
(
ui|0, e−di

)
U

(
yi|µzi − θzidie

−λzi , µzi + θzidie
λ
zi

)
.

5.2.1.2 Model priors

The prior on the weights of the finite mixture will be a Dirichlet distribution, p(w|δ, k) =

Dir(w|δ, . . . , δ). For the location parameters

p(µ|µ0, σ
2
0, k) ∝ k!

k∏
j=1

N(µj |µ0, σ
2
0)1{µ1 < . . . < µk} (5.10)

the order statistics of k normal distributions.

Note that (5.10) is not to provide an identifiability constraint and break the symmetry

of the likelihood of (5.6). The purpose of this prior is to impose the order needed on

the location parameters to construct the invertible transformation as in Richardson and

Green (1997), see Section 2.2.2.

The prior for the skewness parameters are independent and uniform: U(λj |− ε, ε) for

j = 1, . . . , k. To model the asymmetry of each cluster in a flexible way we included a

hierarchical prior for ε, p(ε) = U(ε|0, ρ) for some ρ > 0.

In the case of the weights of the infinite mixture we will use the stick-breaking

construction, thus

p(vjs) = Be(vjs|1, c) independent for all j and s.

We centered the Dirichlet process on gamma distributions, so

p(θjs) = Ga(θjs|α, βj) independent for all j and s.

In order not be too restrictive with the variance of each unimodal component a hierar-

chical prior for each βj was included; p(βj) = Ga(βj |a, b).

Hence, the unspecified constants of the priors are

δ, µ0, σ
2
0, ρ, c, α, a and b.
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The smoothing parameter c, from the stick-breaking representation of the Dirichlet pro-

cess, influences the size of the truncation point N , of the infinite mixture, see remark

3.10 in Chapter 3. As a result, for small values of c small values of N are obtained,

thus leading to less smooth unimodal distributions. On the other hand, larger values of

c support larger values for N , thus producing smoother distributions. Initially, for the

fixed k case, we followed Escobar and West (1995) and imposed a gamma prior over c

but the results were very similar to those where c was fixed at the mean of the gamma

distribution. So, for simplicity, we omitted this hierarchical level and set c directly.

5.2.1.3 Full conditionals for a fixed k

Here we provide a careful derivation of the full conditional distributions used to construct

the Gibbs sampler for the posterior distribution of the unimodal mixture, when k is

known. To avoid repetition, we will define the following sets and variables:

Aj = {i : zi = j} ⇒ nj = #Aj and

Ajs = {i : zi = j, di = s} ⇒ njs = #Ajs

where #A is the cardinality of the set A.

� The full conditional of the weights of the finite mixture are as in Algorithm 2.1.

� The full conditionals for λ = {λj}kj=1 are given by

p(λj | · · · ) ∝ 1 (λj)

(−ε,ε) sech(λj)
nj

∏
{i:zi=j}

1
(yi)(

−θjse
−λj+µj,θjse

λj+µj

) ,

so if Aj 6= ∅

1 =
∏

{i:zi=j}

1
(yi)(

−θjdi e
−λj+µj,θjdi e

λj+µj

) ,

⇔ ∀i ∈ Aj ⇒ −e−λj <
yi − µj
θjdi

< eλj ,

⇔ − min
i∈Aj

{
yi − µj
θjdi

}
< e−λj and max

i∈Aj

{
yi − µj
θjdi

}
< eλj .
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But |λj | < ε ⇒ e−ε < e−λj < eε and e−ε < eλj < eε then we have found bounds

Lj < λj < Uj where

Lj = log

(
max

{
max
i∈Aj

{
yi − µj
θjdi

}
, e−ε

})
,

Uj = − log

(
max

{
− min
i∈Aj

{
yi − µj
θjdi

}
, e−ε

})
.

Hence, we can write

p(λj | · · · ) ∝


sech(λj)

nj 1
(λj)

(Lj,Uj)
if Aj 6= ∅,

U(λj | − ε, ε) if Aj = ∅.
(5.11)

� The full conditionals for µ = {µj}kj=1 are given by

p(µj | · · · ) ∝ N(µj |µ0, σ
2
0)1 (µj)

(µj−1,µj+1)

∏
{i:zi=j}

1
(yi)(

−θjdi e
−λj+µj,θjdi e

λj+µj

) ,

and if Aj 6= ∅

1 =
∏

{i:zi=j}

1
(yi)(

−θjdi e
−λj+µj,θjdi e

λj+µj

) ,

⇔ max
i∈Aj
{−θjdie

λj + yi} < µj < min
i∈Aj
{θjdie

−λj + yi}.

There is an additional constraint; µj−1 < µj < µj+1, thus letting

Ij = max{max
i∈Aj
{−θjdie

λj + yi}, µj−1},

Sj = min{min
∈Aj
{θjdie

−λj + yi}, µj+1},

the full joint for µj can be written as

p(µj | · · · ) ∝


N(µj |µ0, σ

2
0)1

(µj)

(Ij ,Sj)
if Aj 6= ∅

N(µj |µ0, σ
2
0)1

(µj)

(µj−1,µj+1)
if Aj = ∅,

(5.12)

� The infinite weights {{wjs}kj=1}Ns=1 are updated as in Algorithm 3.5, with obvious

changes:

p(vjs| · · · ) = Be

(
vjs|1 + njs, nj −

s∑
l=1

njl + c

)
.
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� The full conditionals for {{θjs}kj=1}Ns=1 are derived first noting

p(θjs| · · · ) ∝ Ga(θjs|α, β)

(
1

θjs

)njs ∏
{i:zi=j,di=s}

1
(yi)(

−θjse
−λj+µj,θjse

λj+µj

) .

If Ajs 6= ∅

1 =
∏

{i:zi=j,di=s}

1
(yi)(

−θjse
−λj+µj,θjse

λj+µj

)

⇔ −θjse−λj + µj < min
i∈Ajs

{yi} and max
i∈Ajs

{yi} < θjse
λj + µj

⇔ eλj (µj − min
i∈Ajs

{yi}) < θjs and e−λj ( max
i∈Ajs

{yi} − µj) < θjs,

Thus, taking Ljs = max

{
eλj (µj − min

i∈Ajs
{yi}), e−λj ( max

i∈Ajs
{yi} − µj), 0

}
, we can write

p(θjs| · · · ) ∝


Ga(θjs|α, βj)

(
1
θjs

)njs
1

(θjs)

(Ljs,∞)
if Ajs 6= ∅

Ga(θjs|α, βj) if Ajs = ∅
(5.13)

� For the allocation variables, see Section 5.2.1.1.

� For the hyper-parameters, the full conditional for ε is

p(ε| · · · ) ∝ 1 (ε)
(0,ρ)

(
1

ε

)k k∏
j=1

1(λj)(−ε,ε).

hence

1 =
k∏
j=1

1 (λj)

(−ε,ε) ⇔ ∀ j |λj | < ε ⇔ max
j=1,...,k

{|λj |} < ε,

⇒ 1 (ε)
(0,ρ)

1 (ε)

(Mλ,∞)
= 1 (ε)

(Mλ,ρ)
with Mλ = max

j=1,...,k
{|λj |} ,

⇒ p(ε| · · · ) ∝
(

1

ε

)k
1 (ε)

(Mλ,ρ)
.

For the (βj) we have the full conditionals as

p(βj | · · · ) ∝ Ga

(
βj |a+Nα, b+

N∑
s=1

θjs

)
.

It is not straightforward to sample from the full conditionals of our model, and here we

describe how to sample from them. First, in (5.11) we need to sample from the density

f(x) ∝ sech(x)m 1 (x)
(a,b)

, (5.14)
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with m ∈ N, a, b ∈ R and b > a. For this we have borrowed ideas from Damien and

Walker (2001). We introduce the latent variable y, such that if it is integrated out we

get back to the original distribution. Specifically, we consider

f(x, y) ∝ 1 (x)
(a,b)

1 (y)
(0,(1/ cosh(x))m)

,

where we are using the identity sech(x) = cosh(x)−1. Thus, to sample from (5.14) we

generate

f(y|x) ∝ 1 (y)
(0,(1/ cosh(x))m)

,

f(x|y) ∝ 1
(x)

(max{a,− cosh−1(y−1/m)},min{b,cosh−1(y−1/m)})
.

This is implemented trivially due to the fact that cosh(x) and cosh−1(x) = arcosh (x)

are basic functions available in almost all programming languages.

Second, in (5.13) we need to sample from

f(x) ∝ xα−(n+1)e−βx 1 (x)
(c,∞)

,

with α, β > 0, c ≥ 0 and n ∈ N. We proceed as in the previous case:

f(x, y) ∝ xα−(n+1) 1
(y)

(0,e−βx)
1 (x)

(c,∞)
,

which leads to

f(y|x) ∝ 1
(y)

(0,e−βx)
,

f(x|y) ∝ xα−(n+1) 1 (x)
(c,−log(y)/β) .

Both are easy to sample.

Finally, the inverse transformation technique can be used to sample from the full

conditional of ε, and to sample from truncated normal distributions for the locations the

slice sampling techniques of Damien and Walker (2001) can be used.

In our implementations, to generate one sample from the truncated distributions the

slice sampler was iterated nine times, hence we kept the random variate generated in the
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last iteration. Also note that the starting values in every case where chosen as close as

possible to the mode of the target distribution. With these considerations we observed

good trend between efficiency and performance reducing the correlation and obtaining

an efficient sampler.

5.2.2 Unknown number of components

To develop the case for an unknown number of components, we will use the ideas de-

scribed in Section 2.3. Thus we view reversible jump as a particular case of the product

space model discussed by Godsill (2001), and the main objective is to derive the accep-

tance probability (2.19) to generate a Markov chain with invariant probability distribu-

tion p(φ(k), τ (k), k|y).

Proceeding as in Section 2.3.2, we first identify our variables according to (2.19):

φ(k) = (w(k),λ(k),µ(k),β(k),v(k),θ(k))

τ (k) = (z,d)(k)

with w(k) = {wj}kj=1, λ(k) = {λj}kj=1, µ(k) = {µj}kj=1 and β(k) = {βj}kj=1 vectors and

v(k) =
{
{vjs}Ns=1

}k
j=1

, θ(k) =
{
{θjs}Ns=1

}k
j=1

matrices of k ×N .

5.2.2.1 Hybrid strategy

The Markov chain is constructed via a hybrid strategy (see Appendix A, Section A.4.4),

we will have the following moves:

1. For a fixed k, a Gibbs kernel is used; this move was described in Section 5.2.1.3.

2. Split-combine move.

3. Birth-death of empty components.

4. Once the birth-death move has been attempted we return to the first step, hence

forming cycle. This is repeated until the sampler has converge.
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Remark 5.1. There are two important observations to make: first, the transformation

was devised for v(k) because with the stick-breaking representation
{
{wjs}Ns=1

}k
j=1

are

just functions of them and second, in the trans-dimensional step the slice variables are

fixed.

5.2.2.2 Split and combine move

We will follow the split-combine strategy carefully described in Section 2.3.2, hence the

ratio to update the model index is given by (2.20).

Remark 5.2. To devise the transformation (2.15) for non-trivial problems is the hardest

part in any reversible jump strategy. In our case this was really complicated since the

infinite weights are functions of the v’s (and we only know the prior over the v’s), thus

the transformations had to be defined for the v’s. We tried several alternatives, here we

present the one that delivered the most efficient sampler.

For the split we generate u1 and u2 from a Be(2, 2), hence

wj1 = wju1 ↔ wj2 = wj(1− u1)

µj1 = µj − σju2

√
1− u1

u1
↔ µj2 = µj + σju2

√
u1

1− u1
,

where

σ2
j = cosh(λj)

2

(
1

3

N∑
s=1

wjsθ
2
js

)
.

The location parameters must satisfy µj−1 < µj1 and µj2 < µj+1 (µ0 = −∞ and µk+1 =

∞) if not, the move is rejected immediately. The combine is automatically determined

as

wj = wj1 + wj2 ↔ u1 =
wj1

wj1 + wj2

µj = µj1u1 + µj2(1− u1) ↔ u2 =
(µj2 − µj1)

√
u1(1− u1)

σj
.
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For the transformation of the skewness and variance we used the skewness and stan-

dard deviation of the prior predictive:

skew(Y |λ, α, β) =
6
√

6(α+ (2 + α) cosh(2λ) sinh(λ)
√
α(α− 2 + (4 + α) cosh(2λ))3/2

std(Y |λ, α, β) =

√
α(α− 2 + (4 + α) cosh(2λ))√

6β
,

where

skew(Y |λ, α, β) =
γ3(Y |λ, α, β)

Var (Y |λ, α, β)3/2

and γl = E
(
(Y − E(Y ))l

)
the lth moment about the mean.

After trying different alternatives we chose

sinh(λj) =
sinh(λj1) + sinh(λj2)

2

std(Y |λj , α, βj) = std(Y |λj1 , α, βj1) + std(Y |λj2 , α, βj2),

and defining

u3 =
sinh(ε) + sinh(λj1)

2 sinh(ε) + sinh(λj1) + sinh(λj2)

u4 =
1

1 +
βj1
√
α−2+(4+α) cosh(2λj2 )

βj2
√
α−2+(4+α) cosh(2λj1 )

,

we have the combine for these two parameters already set. For the split we work out

λj1 , λj2 , βj1 and βj2 generating u3 and u4 from a Be(2, 2)

sinh(λj1) = 2u3 sinh(λj)− (1− 2u3) sinh(ε)

sinh(λj2) = 2(1− u3) sinh(λj) + (1− 2u3) sinh(ε)

βj1 =
βj
√
α− 2 + (4 + α) cosh(2λj1)

u4

√
α− 2 + (4 + α) cosh(2λj)

βj2 =
βj
√
α− 2 + (4 + α) cosh(2λj2)

(1− u4)
√
α− 2 + (4 + α) cosh(2λj)

.

The full joint of vjs, see Algorithm 3.5, is given by

p(vjs| · · · ) = Be(vjs|1 + njs, c+mjs)

⇒ mode(vjs| · · · ) =
njs

njs +mjs + c− 1
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with mjs = nj −
s∑
l=1

njl.

Thus assuming

vjs =
njs

njs +mjs
⇒ mjs

njs
=

(1− vjs)
vjs

so if u5s ∼ beta(1, 1), for the split, we can think in

nj1s ≈ u5snjs ↔ nj2s ≈ (1− u5s)njs

mj1s ≈ u∗smjs ↔ mj2s ≈ (1− u∗s)mjs

hence,

vj1s =
nj1s

nj1s +mj1s
=

u5svjs
u5svjs + u∗s(1− vjs)

vj2s =
nj2s

nj2s +mj2s
=

(1− u5s)vjs
(1− u5s)vjs + (1− u∗s)(1− vjs)

,

for simplicity we imposed u∗s = 1/2 for all s, so the split will be defined as

vj1s =
2u5svjs

1− (1− 2u4s)vjs
↔ vj2s =

2(1− u5s)vjs
1 + (1− 2u5s)vjs

,

then we generate wj1s and wj2s for s = 1, . . . , N via the stick-breaking representation.

The combine is easily calculated

vjs =
vj1s + vj2s − 2vj1svj2s

2− vj1s − vj2s
↔ u5s =

vj1s − vj1svj2s
vj1s + vj2s − 2vj1svj2s

,

and again, we generate wjs for s = 1, . . . , N using the stick-breaking representation.

To combine θjs we related

θjs(| sinh(λj)|+ 1) = θj1s(| sinh(λj1)|+ 1) + θj2s(| sinh(λj2)|+ 1),

where θjs| sinh(λj)| is the length of the base of sub-component s of the random histogram

j. The easiest mapping to (0, 1) is

u5s =
θj1s(| sinh(λj1)|+ 1)

θj1s(| sinh(λj1)|+ 1) + θj2s(| sinh(λj2)|+ 1)
.
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To split, we generate u6s ∼ beta(2, 2) for s = 1, . . . , N and consider

θj1s = u6sθjs
(| sinh(λj)|+ 1)

(| sinh(λj1)|+ 1)

θj2s = (1− u6s)θjs
(| sinh(λj)|+ 1)

(| sinh(λj2)|+ 1)
.

With T (φ(k),u) and the auxiliary variables already defined we can calculate the

absolute value of the determinant of the Jacobian. Interchanging rows of the Jacobian

matrix: block matrices are obtained. Thus, we can use the fact that, if J is a square

block matrix,

J =

 Amxm 0mxn

Cnxm Dnxn


where 0mxn is a matrix of zeroes. Hence, Det(J) = Det(A)Det(D), and using this fact

recursively, we can calculate the ratio between the determinant of the Jacobian and the

density of the independent variables in (2.19):

1

q2u(u)

∣∣∣∣∂T (φ(k),u)

∂(φ(k),u)

∣∣∣∣ = wj
σj√

u1(1− u1)

× 4 cosh(λj)(sinh(ε) + sinh(λj))√
(1 + sinh(λj1)2)(1 + sinh(λj2)2)

× βj1βj2
βju3(1− u3)

[
1

2N

N∏
s=1

vjs (2− vj1s − vj2s)
3

(1− vj1s)(1− vj2s)

]

×
(

(1 + | sinh(λj)|)2

(1 + | sinh(λj1)|)(1 + | sinh(λj2)|)

)N N∏
s=1

θjs

× 1∏4
l=1 g2,2(ul)

∏N
s=1 g1,1(u5s)g2,2(u6s)

. (5.15)

The first line of (5.15) is the product of the determinants of the Jacobian for the weights

of the finite mixture and the locations. The second row is the determinant of the Ja-

cobian for the skewness and the third is for the variance and v’s The fourth row is the

determinant of the Jacobian of the θ’s. Finally, the denominator in last line is the prod-

uct of the density functions of the independent extra random variables: ga,b(·) is the

density function of a Be(·|a, b).
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The proposals for the allocation variables are as follows: generate two vectors b =

{bi}ni=1 and e = {ei}ni=1 such that bi = zi and ei = di for i = 1, . . . , n. For the split,

first, all the observations such that bi = j∗ with j∗ bigger than j are re-allocated to

bi = j∗ + 1, and leave e untouched. Second, with the split variables, the observations

such that bi = j must be re-allocated randomly to j1 or j2, with probabilities

pi,l,s ∝ wjlwjlse
s U
(
yi| − θjlse

−λjl + µjl , θjlse
λjl + µjl

)
, (5.16)

for l = 1, 2 and s ∈ {1, 2, . . . , Ni} (Ni result of the slice variables). Observe that this

will generate new allocations for the (ei) such that bi = j as well.

With (b, e) already re-allocated, and using the probabilities (5.16), we calculate the

probability for the proposal of the discrete variables in the split, this is given by

p(τ (k+1)|φ(k), τ (k)) =
∏

{i:zi=j}

pi,bi,ei . (5.17)

For the combine; we re-allocate the bi = j∗ bigger than or equal to j2 into j∗−1. Hence,

for the allocations such that bi = j1, ei must be re-allocated. This is done randomly

with probabilities

pi,s|j1 =
pi,j1,s
pi,j1

, for s = 1, . . . , Ni, with pi,j1 =

Ni∑
s=1

pi,j1,s

where here (5.16) is calculated with the combined random variables.

With (b, e) re-allocated the probability for the proposal of the discrete variables in

the combine is

p(τ (k)|φ(k+1), τ (k+1)) =
∏

{i:zi=j1}

pi,ei|j1 . (5.18)

Then, in (2.19) we substitute the values of (5.17) and (5.18).

In this case we do not have the advantage of the deterministic move for the allocations

in the combine, as with the mixture of normals. We need to calculate (5.17) and (5.18)

in both, split and combine moves.
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To complete the specification of (2.19) we only need to calculate

p(φ(k+1), τ (k+1), k + 1|y)

p(φ(k), τ (k), k|y)
=

∏
i∈Ej1∪Ej2

U

(
yi|µbi − θbieie

−λbi , µbi + θbieie
λbi

)
∏
i∈Aj

U

(
yi|µj − θjdie

−λj , µj + θjdie
λj

)

× p(k + 1)

p(k)

w
nj1+δ−1

j1
w
nj2+δ−1

j2

w
nj+δ−1
j B(δ, kδ)

(
1

2ε

)

×
N∏
s=1

w
nj1s
j1s

w
nj2s
j2s

w
njs
js

exp(−
n∑
i=1

(d−i − d
+
i ))(k + 1)

1

σ0

√
2π

× exp(− 1

2σ2
0

(
(µj1 − µ0)2 + (µj2 − µ0)2 − (µj − µ0)2

)
)

× ba

Ga(a)

(
βj1βj2
βj

)a−1

exp(−b(βj1 + βj2 − βj))

×
(
βj1βj2
βj

)Nα( 1

Γ(α)

)N N∏
s=1

(
θj1sθj2s
θjs

)α−1

× exp(−(βj1θj1s + βj2θj2s − βjθjs))

×
(

1

B(1, c)

)N N∏
s=1

(
(1− vj1s)(1− vj2s)

(1− vjs)

)c−1

.

where Ej1 = {i : bi = j1} and Ej2 = {i : bi = j2}.

5.2.2.3 Birth and death move

The birth-death move of empty components is as in Section 2.3.2. In this case, for the

birth, a weight and parameters for the proposed new component are drawn using

wj∗ ∼ Be(1, k), λj∗ ∼ U(−ε, ε), µj∗ ∼ N(µ0, σ
2
0), βj∗ ∼ Ga(a, b) and

vj∗s ∼ Be(1, c) and θj∗s ∼ Ga(α, βj∗), for s = 1, . . . , Ni.

Hence, the independent variable is given by

u = (wj∗ , λj∗ , µj∗ , βj∗ , vj∗1, . . . , vj∗Ni , θj∗1, . . . , θj∗Ni).

5.2.3 Model priors

When working with an unknown number of components, a prior for k is needed and

under the assumption of no additional information, for us, the best option is to impose
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a discrete uniform prior: p(k) =
1

kmax
1 (k)

(1,...,kmax)
for a preselected kmax ∈ N.

Some authors that have worked with normal mixtures suggest a truncated Poisson

distribution (Po(k|1)1 (k)
(1,...,kmax)

), see for example Nobile and Fearnside (2007). This is

with the idea of to penalize the presence of empty components, and thus higher values

for k. But as we have seen, high overall posterior estimates for k occur due to the use of

the normal distribution, so we believe we do not need to follow this idea. All the other

priors are as in Section 5.2.1.2.

5.3 Illustrations

5.3.1 Setting the priors

In this section, we describe how to set the unspecified constants of the model (see Section

5.2.1.2). Let R be the range of the data. For the locations we set µ0 = y(1) + R/2,

σ2
0 = R2 and for the finite weights we take δ = 1, giving a uniform prior over the space

w1 + · · ·+ wk = 1. For the smoothing parameter of the Dirichlet process we found that

results based on c = 2 were good, obtaining smooth predictive densities.

The degree of asymmetry allowed is determined by ρ, which bounds the interval

where λ can move. We set ρ = 0.5 giving room for asymmetry without supporting high

variance due to large values of λ; compare the graphics d) and f) with graphic e) in Figure

5.1. For the kurtosis parameter, α, we chose different values depending on the data set

to analyze. For example, fixing α = 2.5 we obtained good results when estimating a

normal distribution, while to estimate a Laplace distribution, α = 1.01 was a better

option. This will be shown in the next Section. For the remaining unspecified constants

we will follow similar ideas to those of Richardson and Green (1997), see Section 2.3.2.1,

to devise a “default” prior using the data.
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If the asymmetry parameter is zero, the variance of the unimodal distribution is

σ2 =
1

3

∞∑
s=1

wsθ
2
s ,

so proceeding as in Richardson and Green (1997) we can first relate σ to the relevant

parameters and then to the range of the data.

To obtain a more practical relationship we calculate

E
(
σ2
)

=
α(α+ 1)

3β2
⇒ σ ∼=

1

β

√
α(α+ 1)

3
, (5.19)

because E(θ2
s) =

α(α+ 1)

β2
and

∞∑
s=1

E(ws) =
1

c

∞∑
s=1

(
c

c+ 1

)s
= 1 (geometric series). Also,

θs and ws are independent by construction.

Observe that (5.19) is the variance of the prior predictive (5.5), and could have been

obtained alternatively in this manner.

Now note that β ∼ Ga(a, b)⇒ 1/β ∼ Inv-Ga(a, b), and thus

E(1/β) =
b

a− 1
for a > 1 ⇒ σ ∼=

b

a− 1

√
α(α+ 1)

3
,

var(1/β) =
b2

(a− 2)(a− 1)2
for a > 2 ⇒ var(σ) ∼=

b2α(α+ 1)

3(a− 2)(a− 1)2
.

To connect σ with α, a, b and the data, we solve the system of equations:
b

a− 1

√
α(α+ 1)

3
= p1R,

b2α(α+ 1)

3(a− 2)(a− 1)2
= p2R

2,

for the variables a and b, where 0 < p1, p2 < 1.

The solution is given by

a = 2 +
p2

1

p2
and b =

p1(p2
1 + p2)

p2
R

√
3

α(α+ 1)
.

Hence, setting p1 = 0.2 and p2 = 0.5 we are leaving the Dirichlet process to take care of

the tails of each component while being weakly informative about the size of σ.

We do not claim that these choices are non-informative. It is well known there is no

way to be fully non-informative under a Bayesian mixture modeling set-up. In fact, it is
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well known that the posterior for k is sensitive to the choice of the prior for the location

parameters and it is clear that it is heavily influenced by the choice of prior over the

variances; see for example the discussions in Richardson and Green (1997), pp.747-749,

and Jasra, Holmes, and Stephens (2005), pp. 64-65.

Another way to set the priors for the unimodal distribution is to use an interactive

plot of the scaled prior predictive (5.5): wE (fG(y|λ, µ)), where 0 < w ≤ 1 and in the

background a histogram of the data (we generated our interactive graphic in R using the

library tcltk, see R Core Team (2012)). The goal here is to obtain a reasonable value to

set ρ, α and a sensible knowledge of the range in which β should lie. We set kmax = 30

in all examples.

5.3.2 Predictive density estimates

To test the unimodal distribution (5.4) we draw samples from six unimodal distributions,

namely: Normal; N(0,1), Student’s-t; t(2), Gamma; Ga(2, 3), Laplace 1; Lap(0, 20, 1),

Laplace 2; Lap(0, 1, 2) and Pearson IV: PearsonIV(3.94, 4.35, 1, 3.74). In each case a

sample of size n = 150 was generated. Since the objective is to assess the range of

shapes the unimodal distribution can approximate, by comparing the predictive density

with the true density, the samples were not randomly drawn. To improve comparabil-

ity, we generated a grid of 150 equally spaced points in (0, 1) and then evaluated the

quantile function, of each distribution, on every point of the grid. For the skew Laplace

and Pearson IV distribution, to calculate the quantiles, the libraries PearsonDS and

LaplacesDemon of R were used, see Byron (2012) and Becker (2012).

For the six unimodal data sets, we ran our fixed k sampler, setting k = 1, for 200,000

iterations. The first 100,000 iterations were used as a burn-in period. In each case a

predictive density estimate was generated (see Appendix 5.B), and these are displayed

in Figure 5.2, along with the true density. For the kurtosis parameter, we tried different

values and kept the one that gave the best fit. For the remaining parameters we set the
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priors as described in the previous section.

From the graphics in Figure 5.2 we see, first, that the predictive densities capture the

correct skewness for both symmetric and asymmetric distributions. Second, in all cases,

smooth predictive density estimates are obtained. This indicates that the choice c = 2,

for the smoothing parameter of the Dirichlet process is a sensible choice. Third, for

different values of α, different degrees of kurtosis are obtained and this agrees with what

was mentioned in Section 5.1.1.1. Looking back to graphic c) in Figure 5.1, the prior

predictive suggested that α = 3.8 was a good option to generate the density estimate

for the standard normal. But we present the predictive density estimate generated with

α = 2.5 instead. The reason is that the predictive generated with α = 3.8 gave a good

fit for the tails of the distribution, but produced a flat density estimate.
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Figure 5.2: Density estimates for six unimodal distributions.

5.3.3 Examples for an unknown number of components

To test the mixture of unimodal distributions (5.6), simulated and real data sets were

analyzed. For the simulated data, mixtures of gamma, skew Laplace and skew normal
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distributions were used, namely:

Model 1: 0.2 Ga(40, 20) + 0.6 Ga(6, 1) + 0.2 Ga(200, 20)

Model 2: 0.2Lap(−5, 1, .5) + 0.4Lap(0, 1, 1) + 0.3Lap(3, 1, 1) + 0.1Lap(10, 1, 2).

Model 3: 0.1SN(−30, 3,−4) + 0.1SN(−20, 3, 0) + 0.15SN(−10, 2, 4) + 0.15SN(0, 2,−2)

+0.1SN(10, 2, 3) + 0.1SN(15, 2, 2) + 0.1SN(20, 2, 4) + 0.1SN(30, 2, 0)

+0.1SN(35, 2, 1).

The sample size for Models 1 and 2 was n = 400 observations and for Model 3

n = 600 observations. Model 1 was used by Wiper, Rios-Insua, and Ruggeri (2001) to

demonstrate the performance of their reversible jump algorithm for mixtures of gamma

distributions. A plot of Models 1 to 3 is shown in Figure 5.3.
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Figure 5.3: Model 1; mixture of gamma distributions, Model 2; mixture of skew Laplace

distributions and Model 3 mixture of skew normal distributions.

For the real data sets, we use the same examples used by Richardson and Green

(1997): The enzyme and acidity data where described in Chapter 4. The Galaxy data

consists of the velocities (in 1000 km/sec) of 82 distant galaxies diverging from our

own from six well separated conic sections of the Corona Borealis region. This data

set was first studied by Postman, Huchra, and Geller (1986) and it is widely used in

the literature to illustrate methodology for mixture modeling. The three data sets are

available at the library mixAK of R as Galaxy, Acidity and Enzyme. This package

contains a variety of statistical methods including MCMC methods to analyze the data
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using normal mixtures; see Komárek (2009).

We ran our hybrid sampler for 1,000,000 iterations, the first 200,000 as a burn-in

period. Our starting point for k in all the runs was k = 30. With the same data sets,

we also ran the algorithm described by Richardson and Green (1997), for a mixture of

normals model with an unknown number of components, using their default priors (see

Section 2.3.2). The same number of iterations and burn-in period was also used.

Posterior probabilities for k for all data sets are given in Table 5.1. For an easy

comparison with the mixture of normals, the maximum posterior probabilities for k

obtained with the mixture of normals algorithm of Richardson and Green (1997) are

presented in Table 5.2. To show that the computational cost of our algorithm is not

prohibitive, we present a comparison of CPU times also in Table 5.2.

Table 5.1: Unimodal mixture: posterior distribution of k for the seven data sets, default

priors and taking α = 2.5.

Data set n p(k|y)

Data from 400 p(1) = 0.000 p(2) = 0.049 p(3) = 0.226 p(4) = 0.280

Model 1 p(5) = 0.211 p(6) = 0.126
∑
k>6 p(k) = 0.108

Data from 400
∑
k<4 p(k) = 0.000 p(4) = 0.092 p(5) = 0.195 p(6) = 0.227

Model 2 p(7) = 0.196 p(8) = 0.133
∑
k>8 p(k) = 0.156

Data from 600
∑
k<7 p(k) = 0.000 p(7) = 0.122 p(8) = 0.259 p(9) = 0.281

Model 3 p(10) = 0.190
∑
k>10 p(k) = 0.149

Enzyme 245 p(1) = 0.000 p(2) = 0.257 p(3) = 0.325 p(4) = 0.222

p(5) = 0.112 p(6) = 0.052
∑
k>6 p(k) = 0.032

Acidity 155 p(1) = 0.000 p(2) = 0.149 p(3) = 0.238 p(4) = 0.235

p(5) = 0.173 p(6) = 0.105
∑
k>7 p(k) = 0.1

Galaxy 82 p(1) = 0.004 p(2) = 0.057 p(3) = 0.154 p(4) = 0.217

p(5) = 0.212 p(6) = 0.161
∑
k>6 p(k) = 0.195

In almost all experiments, the posterior distribution for k calculated with the uni-

modal mixture, supports lower values for k when compared to the normal mixture. There
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are only two cases when both models are similar in terms of k: the acidity data and the

data from Model 2. Finally, we see that for Model 3, the mixture of skew normal dis-

tributions, the posterior calculated via the unimodal distribution gives support to low

values for k, the maximum is achieved at k = 9, which is the true value. On the other

hand, with the normal mixture, the maximum for p(k|y) is attained at k = 12.

A comparison of predictive densities is shown in Figure 5.5. These were calculated

with the output of the algorithms for a moving k, see Appendix 5.B. It is interesting

to note that without giving support to unusually high number of components, in the

posterior for k, the unimodal mixture gives accurate representations of each data set.

This is an appealing characteristic of our model.

After starting the chains at kmax = 30 they all moved rapidly to a neighborhood

close to the highest posterior value for k. In Figure 5.4 we display the trace for k for the

galaxy, acidity and enzyme data (after discarding the burn-in period). They show that

in each case the MCMC algorithm mixes well over k. The combined acceptance rates for

the two moves that alter the number of components (split-combine and birth-death) were

approximately of 15%, 13% and 4% for the galaxy, acidity and enzyme data respectively.
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Figure 5.4: Trace for k: galaxy, acidity, and enzyme data.
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Figure 5.5: Comparison of predictive densities: unimodal vs normal mixture models,

default priors.
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Table 5.2: True k (if known), normal mixture: maximum posterior distribution of k

(default priors) and time comparison between unimodal and normal mixture algorithms.

normal mixture approx time (minutes)

Data set True k max{p(k|y)} normal unimodal

Model 1 3 p(5) = 0.260 8 15

Model 2 4 p(6) = 0.191 10 20

Model 3 9 p(12) = 0.192 27 29

Enzyme - p(4) = 0.339 4 9

Acidity - p(3) = 0.258 3 8

Galaxy - p(6) = 0.189 3 7

5.3.4 Examples for a known number of components

To make inference for individual components and classification, we need to “undo the

label switching”, see Chapter 4. With this aim we use the Data relabeling algorithm,

see Section 4.3.

We ran the fixed k algorithms, with default priors, for the unimodal and normal

mixture. We used the galaxy, acidity and enzyme data assuming, for the unimodal

mixture, k = 4, k = 3 and k = 3, respectively, and k = 6, k = 3 and k = 4, for the normal

mixture. Note that these are the values for which the posterior distributions attained

its maximum for each algorithm. To test our model when the number of underlying

components is large, we performed the same comparison using model 3. In all cases, we

generated 200,000 iterations, throwing the first 100,000 iterations as a burn-in period.

Then we post-processed the MCMC output using the Data relabeling to undo the label-

switching and estimate the scaled densities (see Appendix 5.B) and single best clustering.

The results are displayed in Figure 5.6. For Model 3 the results are displayed in Figure

5.7, here a plot of the scaled densities and single best clustering calculated via the true

model was included.

For the acidity data, the estimated scaled densities and single best clustering obtained
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Figure 5.6: Unimodal (top row) and normal mixture for a known k: estimated scaled

densities and single best clustering.
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Figure 5.7: True, estimated scaled densities and single best clustering for Model 3.
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with the unimodal and normal mixtures are similar. However, from the normal perspec-

tive, where a cluster should be a set of observations adequately modeled by a normal

distribution, we observe skew scaled densities which makes no sense. See also Figure 4.3.

in Chapter 4, the same behavior can be seen when the ECR and KL algorithms are used

to undo the label switching. For the galaxy data, in the case of the unimodal mixture,

we see four unimodal clusters where each cluster has at least one observation assigned

to it. Instead, in the normal case, cluster five has no observations assigned. But beyond

this, and more importantly, we observe again a small degree of skewness in clusters three

and four of the mixture of normals. For the enzyme data, with the unimodal mixture,

from the single best clustering we are able to identify three skew clusters. Instead, to

model skewness, the normal mixture needs two normals to model a single cluster (see the

cluster labeled as cluster one). For the data set from Model 3, the single best clustering

calculated with the unimodal mixture allocates observations to eight clusters, missing

group six. There are problems when the components are overlapped, and this can be

seen from components three to five. With the normal mixture, the observations are

allocated to ten clusters instead of twelve. Here again it is clear that in presence of skew

components two normals are needed to model a single skew component, this can be seen

in clusters one and eleven for example.

5.3.5 Computational issues

All the experiments were performed in a Dell Precision M4400 (processor Intel core 2

Duo at 2.26 GHz) running Linux openSUSE 12.1. We coded our approach in C and used

the .C Interface to R to have a friendly data input interface, see Peng and Leeuw (2002)

for a good introduction. To manage the random seed and generate the random variates

from the common distributions we used the GSL-GNU Scientific Library, see Galassi et

al. (2009). The analysis and graphics were done in R. All the reported CPU times were

measured using the function system.time of R.
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5.4 Discussion

5.4.1 Conclusions

We have extended the mixture model of Richardson and Green (1997) to allow for clusters

to be modeled by unimodal distributions. In all the examples considered, we obtained

accurate representations of the data, without giving support to unusually high number

of components. This is an appealing feature of the model and provides k with an explicit

interpretation: the number of clusters modeled by unimodal densities.

In the absence of further information, it is natural to associate the number of clusters

with the number of unimodal distributions. Hence, if we assume unimodality instead of

normality for the components distribution of a mixture, we are giving a proper mean-

ing to k. For this, obviously, fG(y|λ, µ) must be unimodal, which is based on Feller’s

representation of unimodal and symmetric distributions.

It is fair to say that replacing the nonparametric density (5.4) with a flexible para-

metric family, which includes skewness and kurtosis parameters, would result in a simpler

model. However, we believe that this would bring problems for modeling tails. A para-

metric model carries a certain type of heavy tail and given the nature of the problem

we are tackling, tails will be playing an important role. It is imperative not to get them

wrong, and parametric models offer this opportunity. Nonparametric models do not.

We believe that the ideas of Godsill (2001) nicely complement the paper of Green

(1995) and allow us to think clearly about how to deal with a trans-dimensional problems.

We also believe that we would not have been able to implement an MCMC strategy

without the use of the slice variables needed to sample each (fGj (y|λj , µj)). These two

concepts together give us the ability to move a stochastic process across sub-spaces of

different dimensions.
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5.4.2 Future Work

One of the aims is to extend our ideas to regression models and also a multivariate

model. For the latter we have to construct a nonparametric unimodal and multivariate

distribution, which is not so straightforward. The initial idea is to describe a multivariate

unimodal distributions via Yj = UjZj , for j = 1, . . . , p, where the U = (U1, . . . , Up) are

i.i.d standard normal and the Z = (Z1, . . . , Zp) have any joint distribution. We would be

trying to extend Khinchin’s characterization (Khinchin (1938)) of univariate unimodal

distributions to the multivariate setting, see Devroye (1997) and Tao (1989).

From the four parameter densities that can be found in the literature: the Pearson

IV family of densities and the densities summarized in Rigby and Stasinopoulos (2005),

pp. 516-517, which includes the Box-Cox power exponential among others, we believe

that the prior predictive (5.5) deserves further study. Its closed form is easy to write in

full and its parameters can be easily understood. Here the idea would be to analyze this

unimodal distribution further: find efficient methods to generate random variates from it,

estimate its parameters (moments, maximum likelihood and posterior mean estimates),

obtain (if possible) the normal distribution or other standard distributions from it (or a

version of it), etc. Also, it would be of interest to use (5.5) to model the residuals in a

regression model or as the components distribution in a finite mixture model.

5.A Kernel

A non-negative valued function k(y|θ) defined on (R2,B(R2)) is a valid kernel iff∫
R
k(y|θ)dy = 1 for each θ ∈ R, (5.20)∫

R
k(y|θ)G0(dθ) < ∞ for each y ∈ R, (5.21)

where G0 is a distribution function, see Lo (1984).
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We use the function

k(y|θ) = U (y| − θ, θ)1 (θ)
(0,∞)

=
1

2θ
1 (y)

(−θ,θ) 1
(θ)

(0,∞)
, (5.22)

note that 1 (y)
(−θ,θ) 1

(θ)
(0,∞)

= 1 (θ)
(|y|,∞)

, and set G0 as the gamma distribution function with

density

g0(θ|α, β) =
βα

Γ(α)
θα−1e−βθ 1 (θ)

(0,∞)
α > 0, β > 0.

All the conclusions remain valid, with small modifications, for the function

k(y|θ, λ, µ) = U
(
y| − θe−λ + µ, θeλ + µ

)
1 (θ)

(0,∞)

but for ease of notation we will stay with (5.22).

It is straightforward to see that k(y|θ) is a non-negative function and satisfies con-

dition (5.20). However it is not clear that it satisfies condition (5.21), hence we need to

show that for every y ∈ R∫
R
k(y|θ)G0(dθ|α, β) =

∫ ∞
|y|

βα

2Γ(α)
θα−2e−βθdθ <∞

It is clear that for each y ∈ R \ {0}

0 ≤
∫ ∞
|y|

βα

2Γ(α)
θα−2e−βθdθ ≤

∫ ∞
0

βα

2Γ(α)
θα−2e−βθdθ

=
βα

2Γ(α)

(
θα−1

α− 1
e−βθ

∣∣∣∣∞
θ=0

+
β

α− 1

∫ ∞
0

θα−1e−βθdθ

)
=

βα

2Γ(α)(α− 1)
θα−1e−βθ

∣∣∣∣∞
θ=0

+
β

2(α− 1)
. (5.23)

We see that for α = 1 (5.23) is not defined and for α < 1 it goes to −∞ which makes no

sense. Hence to have a valid kernel we need to impose the constraint α > 1, in this case

(5.23) is equal to β
2(α−1) <∞.

Now if we define

w(y) =

∫ ∞
y

βα

2Γ(α)
θα−2e−βθdθ and a(y) = |y|

a simplified version of our prior predictive,(5), E(fG(y)) with the kernel (5.22) can be

set: g(y) = w(a(y)) = E(fG(y)). Thus to find the range of values where E(fG(y)) is
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differentiable (smooth) the chain rule can be used: g′(y) = −a′(y)
βα

2Γ(α)
|y|α−2e−β|y|

where a′(y) = 1 if y ≥ 0 and a′(y) = −1 otherwise.

Clearly if 1 < α < 2, then

lim
y→0−

g′(y) =∞ and lim
y→0+

g′(y) = −∞,

for α = 2 we have

lim
y→0−

g′(y) =
β2

2
and lim

y→0+
g′(y) = −β

2

2
,

and for α > 2, limy→0 g
′(y) = 0.

In summary, first to have a valid kernel we need to impose α > 1. Second, at y = 0

the prior predictive E(fG(y)) is a continuous function if 1 < α ≤ 2 but the derivative

does not exist. Third, for a smooth prior predictive at y = 0, α > 2 is required. For the

kernel k(y|θ, λ, µ), we take a(y) = max{(µ− y)eλ, (y − µ)e−λ} so we will have the same

three conclusions. In this case the point where the derivative does not exist is y = µ.

5.B Predictive density estimate

At iteration t of the hybrid MCMC sampler the following values are generated

kt, N t, {wtj}k
t

j=1, {λtj}k
t

j=1, {µtj}k
t

j=1, {βtj}k
t

j=1,{
{wtjs}N

t

s=1

}kt
j=1

and
{
{θtjs}N

t

s=1

}kt
j=1

where kt and N t are the number of components of the finite mixture and the truncation

point of the infinite mixture, (5.9), respectively and if k is fixed, then kt = k for all t.

Hence for {wtjs}N
t

s=1 to sum one for each j, we need to generate

wtjNt+1 = 1−
Nt∑
s=1

wtjs and θtjNt+1 ∼ Ga(α, βtj).

Thus the predictive for a new observation y∗, conditionally independent to y = {yi}ni=1,

is approximated via

p(y∗|y) ≈ 1

M

M∑
t=1

kt∑
j=1

wtj

Nt+1∑
s=1

wtjs U

(
y∗|µtj − θtjse

−λtj , µtj + θtjse
λtj

)
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where M is the number of iterations after the burn-in period.

For a fixed k, to approximate the scaled density for component j, we first undo the

label switching and then calculate

1

M

M∑
t=1

wtj

Nt+1∑
s=1

wtjs U

(
y∗|µtj − θtjse

−λtj , µtj + θtjse
λtj

)
.



Appendix A

MCMC Background

A.1 Motivation

Under the Bayesian setting, in addition to specifying the model for the observed data

y = {yi}ni=1 given a vector of unknown parameters θ, usually in the form of a probability

distribution p(y|θ), we treat θ as a random variable. Then, to make inference about θ

the idea is to update our prior beliefs, expressed via p(θ), using Bayes’ rule:

p(θ|y) =
p(y|θ)p(θ)∫

Θ
p(y|θ)p(θ)dθ

. (A.1)

This can be seen as a learning process: first, we set a model for the data (as in the

classic framework); second, we introduce our prior beliefs into the problem via p(θ); and

third, once we have observed the data our knowledge about θ is updated calculating the

posterior distribution (A.1).

Then we can calculate posterior summaries such as

E(g(θ)|y) =

∫
Θ
g(θ)p(θ|y)dθ, (A.2)

as sensible choice for a point estimate of θ, or if we want a Bayesian confidence interval

we can find the α/2 and (1− α/2) quantiles of p(θ|y), see Carlin and Louis (2000) for a

complete treatment on Bayesian methods.

133
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The fact is that only in trivial cases it is possible to work out (A.1) analytically to

then calculate (A.2) exactly. However, with the advent of Markov chain Monte Carlo

(MCMC) methods it is now possible find ways to generate samples with the property

that the empirical distribution of the sample approximates the posterior distribution

(A.1) and using such samples it is easy to estimate integrals such as (A.2) or any other

posterior summaries.

In this Appendix we summarize the results of Markov chain theory and the basic

ideas under some MCMC strategies as used in this thesis: Gibbs sampler, Metropolis-

Hastings and slice sampler. The material of this Appendix is based on general state

space Markov chain theory as described by Tierney (1994), Tierney (1996) and for the

basic definitions, the PhD dissertation of Johnson (2009) was also very useful.

To ease the notation we will always assume that the state space of the chain is Rk,

but the results remain valid in more general state spaces.

A.2 Basic definitions

Let Φ = {Xt : t ≥ 0} denote a discrete time Markov chain on (Rk,B(Rk)). The

construction of the chain begins from a starting value X0 which is specified by some

initial distribution π0. However, X0 is often set to some chosen value. From X0 the

Markov chain evolves according to some transition kernel P. We assume throughout that

P has corresponding transition density k. The transition kernel is a function P(x, A)

such that for t ≥ 0

P (x, A) = P
(
Xt+1 ∈ A|Xt = x

)
=

∫
A
k(x, z)dz. (A.3)

for all x ∈ Rk and A ∈ B(Rk).

For any fixed x, P(x, ·) is a probability measure on (Rk,B(Rk)). Hence, P is the dis-

tribution of the chain after one step given that it starts at x. Different MCMC strategies

such as the Gibbs or Metropolis-Hastings give rise to different transition kernels. The
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chain constructed from π0 and P is Markov since it satisfies the Markov property

P(Xt+1|Xt,Xt−1, . . . ,X0) = P(Xt+1|Xt).

Further, the Markov chain is time invariant since P does not depend on the iteration

number.

For a probability distribution ν on (Rk,B(Rk)) with density q(x) with respect to

some measure µ i.e. for any set A ∈ B(Rk), ν(A) =
∫
A q(x)µ(dx). A new probability

distribution ν P is defined by

ν P(A) =

∫
Rk
P(x, A)q(x)µ(dx). (A.4)

So if Xt has probability distribution ν, then Xt+1 has probability distribution ν P. For

ease of exposition we will often assume that µ is the Lebesgue measure. However, all

methods herein extend beyond the Lebesgue setting.

Let Pt denote the t-step transition kernel corresponding to the t-step transition den-

sity kt. Then we can write the t-step transition law of the chain as

Pt(x, A) = P(Xt ∈ A|X0 = x) =

∫
A
kt(x, z)dx, (A.5)

where A ∈ B(Rk) and kt can be defined iteratively as

kt(x, z) =

∫
Rk
k(x,v)kt−1(v, z)dv.

If for some probability distribution π, with probability density p(·), we have that

π(A) = πP(A) for all A ∈ B(Rk) then π will be the invariant probability distribution

of the Markov chain, i.e. Xt ∼ π ⇒ Xt+1 ∼ π = πP. Equivalently, π is invariant for the

chain if

p(x) =

∫
Rk
k(z,x)p(z)dz

since for any A ∈ B(Rk) integrating over both sides gives

π(A) =

∫
A
p(x)dx =

∫
A

{∫
Rk
k(z,x)p(z)dz

}
dx =

∫
Rk
P(z, A)p(z)dz = πP(A).
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A useful result to prove that a chain has invariant probability distribution π is the

detailed balance condition:

k(x, z)p(x) = k(z,x)p(z) for all x, z ∈ Rk. (A.6)

If this property holds, the Markov chain is reversible with respect to π. To show that π

is the invariant distribution we integrate over both sides of (A.6)

p(x) =

∫
Rk
k(x, z)p(x)dz =

∫
Rk
k(z,x)p(z)dz,

because

∫
Rk
k(x, z)dz = P(x,Rk) = 1.

Remark A.1. Reversibility is not required for π to be the invariant distribution of the

Markov chain.

The total variation distance between two probability distributions v1 and v2 is defined

as ||v1 − v2|| = sup
A∈B(R)

|v1(A)− v2(A)|.

A.3 Posterior distributions, ergodic Markov chains and

convergence results

Suppose that we construct a Markov chain Φ = {θt : t ≥ 0} with transition kernel P

that has invariant distribution

π(A|y) =

∫
A
p(θ|y)dθ with A ∈ B(Rk). (A.7)

Then (A.7) is the posterior distribution that is the main target of any Bayesian inference

problem. If in this case, we want to use MCMC techniques to accurately estimate

integrals such as (A.2) with Markov chain sample path averages such as

ḡN =
1

N + 1

N∑
t=0

g(θt) (A.8)

we need to ensure (A.8) converges to E(g(θ)|y) from any initial value θ0. A minimal

requirement for this is irreducibility. Irreducibility guarantees that from any staring



Appendix A. MCMC Background 137

point the chain is able to reach all the important parts of the state space (important

with respect to some measure). Further, we need to ensure that there is no bias, i.e. the

chain does not traverse the state space following a given pattern, such a chain is called

aperiodic. For stronger convergence results we need an additional requirement, Harris

recurrence. Harris recurrent means that for any starting value the chain visits all the

important sets of the space state infinitely often. The formal definitions are

Definition A.3.1. (ν-irreducible) A Markov chain Φ is said to be ν-irreducible if there

exists a non-zero σ-finite1 measure ν on (Rk,B(Rk)) such that for all θ ∈ Rk and

A ∈ B(Rk) for which ν(A) > 0, there exists some t such that Pt(θ,A) > 0. That is, Φ

is ν-irreducible if every ν-positive set is accessible from any state θ ∈ Rk.

Definition A.3.2. (Aperiodic) A Markov chain Φ with invariant probability distribution

π(·|y) is aperiodic if there do not exist d ≥ 2 and disjoint subsets Θ1,Θ2, . . . ,Θd ∈ B(Rk)

with P(θ,Θi+1) = 1 for all θ ∈ Θi (1 ≤ i ≤ d− 1), and P(θ,Θ1) = 1 for all θ ∈ Θd, such

that π(Θ1|y) > 0 (and hence π(Θi|y) > 0 for all i). That is, we cannot partition Rk

such that Φ makes a regular tour through the partition.

Remark A.2. The chain is aperiodic, if there is positive probability that at time t+ 1

the chain remains in an arbitrary small neighborhood of θt.

Definition A.3.3. (Harris Recurrent) A Markov chain Φ is Harris recurrent if for any

starting value θ ∈ Rk the chain visits set A ∈ B(Rk) infinitely often with probability

one, i.e. Pr(θt ∈ A i.o.|θ0 = θ) = 1.

Definition A.3.4. (Ergodic) A Markov chain Φ is ergodic if it is ν-irreducible, aperiodic,

Harris recurrent and has invariant probability distribution π(·|y).

The following Lemma is useful to show that a Markov chain is ergodic, see Lemma

1 from Tan and Hobert (2009).

1ν is σ-finite if there exist sets A1, A2 . . . such that ∪∞i=1Ai = Rk and ν(Ai) > 0 for all i
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Lemma A.3.1. Suppose Φ is a Markov chain with transition kernel P, transition density

k and invariant probability measure π(·|y). If k(θ, φ) > 0 for all θ, φ ∈ Rk, then Φ is

ergodic.

We can now state the Theorem that will help us to estimate (A.2).

Theorem A.3.1 (Ergodic Theorem). Suppose Φ = {θt : t ≥ 0} is an ergodic Markov

chain on (Rk,B(Rk)), with invariant probability distribution π(·|y). Also suppose that

E(|g(θ)||y) <∞ for some g : Rk → R. Then, for any starting value θ0 = θ

ḡN
a.s.−−−−→

N→∞
E(g(θ)|y). (A.9)

Theorem A.3.2. Suppose Φ = {θt : t ≥ 0} is an ergodic Markov chain on (Rk,B(Rk)),

with invariant probability distribution π(·|y). Then, for any starting value θ0 = θ, the

chain will converge to π(·|y) in total variation distance. That is

lim
t→∞
||Pt(θ, ·)− π(·|y)|| = 0.

For convergence rates, see for example Tierney (1994).

Remark A.3. If the chain Φ is not Harris recurrent but is ν-irreducible and aperiodic

with invariant probability distribution π(·|y), expression (A.9) holds for π-almost all

θ0 = θ with probability one. That is, for π-almost all starting value θ0 = θ

Pr

(
ḡN −−−−→

N→∞
E(g(θ)|y)

)
= 1.

See Tierney (1994), Theorem 3, for the Ergodic Theorem and Roberts and Rosenthal

(2004), Theorem 4, for the relaxed version.

Remark A.4. Marginalize out variables via MCMC ideas is straightforward, e.g. sup-

pose that θ can be split into two components (θ1, θ2) = θ such that (θ1, θ2) ∈ Rk1×Rk2 =

Rk, hence if {(θt1, θt2) : t ≥ 0} is a Markov chain that satisfies the hypothesis of the Er-
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godic Theorem

E(g(θ2)|y) =

∫
Rk2

∫
Rk1

g(θ2)p(θ|y)dθ1dθ2

≈ 1

N + 1

N∑
t=0

g(θt2) for N large enough.

A.4 MCMC algorithms

In this section we review well known MCMC methods to construct Markov chains with

the correct invariant probability distribution: π(·|y). This is always the easiest part of

any MCMC strategy, the hardest problem is to verify that the resulting chain is ergodic.

In this case we will rely on Lemma A.3.1, however helpful advice to verify if a Markov

chain is irreducible and aperiodic can be found in Tierney (1996), pp. 63 and 65.

A.4.1 The Gibbs sampler

The Gibbs sampler is a method of constructing a Markov chain {θt : t ≥ 0} defined

on (Rk,B(Rk)) with invariant probability distribution (A.7) where it is not possible to

sample from the joint density p(θ|y) = p(θ1, . . . , θp|y) but it is possible to sample from

its full conditional densities:

p(θ1|θ2, . . . , θp,y), p(θ2|θ1, θ3, . . . , θp,y), . . . , p(θp|θ1, . . . , θp−1,y).

We can sample from the full joint conditionals via a deterministic sweep or alterna-

tively via a random scan. The difference is that in the deterministic sweep the resulting

chain is not reversible, see Robert and Casella (2004). In this Appendix we only review

the Gibbs sampler generated via the deterministic sweep.

The Gibbs sampler algorithm is displayed in Algorithm (A.17).

Proposition A.4.1. If the density kernel k of the Gibbs sampler satisfies the condi-

tions of Lemma A.3.1, Algorithm A.17 defines an ergodic Markov chain with invariant

probability distribution (A.7).
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Algorithm A.17 Gibbs sampler

Require: Given (θt1, . . . , θ
t
p) = (θt1, . . . , θ

t
p), simulate (θt+1

1 , . . . , θt+1
p ) via

1: θt+1
1 ∼ p(θt+1

1 |θt2, θt3 . . . , θtp,y).

2: θt+1
2 ∼ p(θt+1

2 |θt+1
1 , θt3, . . . , θ

t
p,y).

· · · ·

p: θt+1
p ∼ p(θt+1

p |θt+1
1 , θt+1

2 , . . . , θt+1
p−1,y).

Proof. We will only work the case p = 2, the general case involves bulky manipulations

with the conditional densities but the ideas are very similar.

The transition kernel of the chain is given by

P
(
(θt1, θ

t
2), A

)
=

∫
A
p(θt+1

1 |θt2,y)p(θt+1
2 |θt+1

1 ,y)dθt+1
1 dθt+1

2 . (A.10)

So if (θt1, θ
t
2) ∼ π, then (θt+1

1 , θt+1
2 ) ∼ πP where from (A.4) is easy to see that

πP(A) =

∫
Rk2

∫
Rk1

∫
A

p(θt1, θ
t
2|y)p(θt+1

1 |θt2,y)p(θt+1
2 |θt+1

1 ,y)dθt1dθ
t
2dθ

t+1
1 dθt+1

2 ,

=

∫
A

∫
Rk2

p(θt2|y)p(θt+1
1 |θt2,y)p(θt+1

2 |θt+1
1 ,y)dθt2dθ

t+1
1 dθt+1

2 ,

=

∫
A

p(θt+1
1 , θt+1

2 |y)dθt+1
1 dθt+1

2 ,

= π(A|y).

Hence if k(θt, θt+1) = p(θt+1
1 |θt2,y)p(θt+1

2 |θt+1
1 ,y) > 0, Lemma A.3.1 guarantees the

ergodicity of the chain.

Remark A.5. If the full conditionals used to generate the Gibbs sampler are positive,

from Lemma A.3.1, the resulting Markov chain is ergodic.

A.4.2 The Metropolis-Hastings

The Metropolis-Hastings is a method of constructing a Markov chain {θt : t ≥ 0} defined

on (Rk,B(Rk)) with invariant probability distribution (A.7). This algorithm is based

on proposing values sampled from an instrumental distribution, q(φ|θ), which are then

accepted with a certain probability that reflects how likely it is that they are from
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the target posterior density p(θ|y). The Metropolis-Hastings algorithm is displayed in

Algorithm A.18.

Algorithm A.18 Metropolis-Hastings

Require: Given θ = θt, simulate θt+1 via

1: Draw φ∗ ∼ q(φ | θt).

2: Take

θt+1 =


φ∗ with probability α(θt, φ∗),

θt with probability 1− α(θt, φ∗).

where

α(θ, φ) =


min

{
1,
p(φ|y)q(θ|φ)

p(θ|y)q(φ|θ)

}
if p(θ|y)q(φ|θ) > 0,

1 otherwise.

Remark A.6. In Algorithm A.18, the target density, p(θ|y), should be known only up

to a proportionality constant.

Proposition A.4.2. Algorithm A.18 defines a Markov chain with invariant probability

distribution (A.7).

Proof. In this case we can use the detailed balance condition to prove that π(·|y) is the

invariant distribution of the chain. The transition density of the chain is given by

k(θt, φ∗) = α(θt, φ∗)q(φ∗|θt) +
{

1− r(θt)
}
δθt(φ

∗),

where r(θ) =

∫
Rk
α(θ, φ)q(φ|θ)dφ.

The reversibility of the Metropolis-Hastings is easily established by noting

α(θt, φ∗)q(φ∗|θt)p(θt|y) = min

{
1,
p(φ∗|y) q(θt|φ∗)
p(θt|y) q(φ∗|θt)

}
q(φ∗|θt)p(θt|y)

= α(φ∗, θt)q(θt|φ∗)p(φ∗|y) and{
1− r(θt)

}
δθt(φ

∗)p(θt|y) = {1− r(φ∗)} δφ∗(θt)p(φ∗|y)

these two conditions show that k(θt, φ∗)p(θ|y) = k(φ∗, θt)p(φ∗|y).
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We can use again Lemma A.3.1 to prove the ergodicity of the chain, this will clearly

depend on the instrumental distribution q(φ|θ) and on p(θ|y).

To finish this section we have to mention that the Gibbs sampler can be obtained

as a particular case of the Metropolis-Hastings where the proposals are always accepted

with probability one, see Robert and Casella (2004), Chapter 10.

A.4.3 The slice sampler

The slice sampler is a method of constructing a Markov chain {θt : t ≥ 0} defined on

(Rk,B(Rk)) with invariant probability distribution (A.7), where after the introduction

of strategic latent variables we can derive a Gibbs sampler with easy to sample full joint

conditionals. The idea is as follows, consider the density given by p(θ|y) ∝ p(θ)l(y|θ),

where l is a non-negative invertible function on θ (not necessarily a density) and p(θ) a

density. Now, suppose that it is not possible to sample directly from p(θ|y). Hence, we

introduce a latent variable u such that p(θ, u|y) ∝ p(θ)1 {u < l(y|θ)}. It is clear that

integrating out u we go back to the original model. The full conditionals for the Gibbs

sampler will be given by

p(u|θ,y) ∝ U(0, l(y|θ)),

p(θ|u,y) ∝ p(θ)1 {u < l(y|θ)} .

Since l, as a function of θ, has an inverse it is possible to find the set Au = {θ|l(y|θ) > u},

thus to sample from p(θ|u,y) we will sample from a truncated version of p(θ).

Remark A.7. The decomposition p(θ|y) ∝ p(θ)l(y|θ) is not unique, and this fact can

be used when constructing the joint density containing the latent variable.

The main aim under slice sampler is to avoid the use of a rejection sampler, such as

the Metropolis-Hastings, and derive an efficient and easy to code MCMC strategy.

Remark A.8. This idea is extended to the case where

p(θ|y) ∝ p(θ)
n∏
i=1

li(y|θ).
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Here we will need to introduce the latent variables u1, . . . , un, and work with the set

Au = {θ|li(y|θ) > ui, for i = 1, . . . , n}.

For more on slice sampler techniques see Damien, Wakefield, and Walker (1999)

for the main ideas, and Damien and Walker (2001) for ways to sample from truncated

distributions.

A.4.4 Hybrid strategies

We have described how to use the Gibbs, Metropolis-Hasting and slice sampler in pure

form to generate a Markov chain with invariant probability distribution (A.7). But they

can be combined into hybrid strategies, these are commonly called cycles and mixtures,

see Tierney (1994). In a cycle there are transition kernels P1, . . . ,Pk: each kernel is used

in turn and when the last one is used, the cycle is restarted. As an example suppose

θ can be split into (θ1, θ2) and that we can sample from θ1|θ2 directly, as in the Gibbs

sampler, but direct sampling from θ2|θ1 is not possible, thus to sample from θ2|θ1 we

use a Metropolis-Hastings or a slice sampler. Is easy to see that the resulting chain will

have invariant probability distribution π(·|y). In a mixture there are transition kernels

P1, . . . ,Pk and positive probabilities p1, . . . , pk (pj > 0 and
∑

j pj = 1). At each step

one of the kernels is selected according with these probabilities. Here if the invariant

probability distribution for each kernel is π(·|y), the invariant probability distribution

for the mixture Q = p1 P1 + · · ·+ pk Pk will be π(·|y), this is straightforward since

πQ = (p1πP1 + · · ·+ pkπPk) = π.

A.5 Practical considerations: starting values, burn in pe-

riod and diagnosing MCMC convergence

The distribution of the chain depends on starting values θ0 hence to initiate any MCMC

algorithm we would like to chose θ0 ∼ π(·|y). The problem is that this is rarely possible,
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thus whether we find ways to chose θ0 close to the mode of the posterior distribution or

we simply sample the starting values form the prior. In either case, to obtain accurate

estimates, we need to ensure that the sample path of the chain used to calculate ḡN

is free from the influence of θ0. A common practice is to discard the first iterations of

the simulation, hence effectively reducing the dependence of ḡN on θ0. The discarded

iterations are usually called burn-in period, see Gilks, Richardson, and Spiegelhalter

(1996). Now, if the Markov chain is able to move quickly to and through the support

of the posterior distribution, sometimes referred to as good mixing, for small burn-in

period ḡN will be almost independent of θ0. In contrast, if the chain gets stuck in small

regions of the state space for long periods of time, longer burn-in periods will be needed

to reduce the dependence between ḡN and θ0.

The mixing behavior of the chain also determines the rate of convergence of the

estimator ḡN to E(g(θ)|y), and so determines the length of the chain N required for

accurate inference, see the Ergodic Theorem, expression (A.9). Convergence is faster if

the chain exhibits good mixing behavior. Therefore we need to asses the mixing behavior

of the chain, this is usually called diagnosing MCMC convergence. In the literature there

are several proposals to diagnose MCMC converge, select N and the length of the burn-

in period, see the R package coda (Plummer, Best, Cowles, and Vines (2006)) and

references therein. We have taken a less formal approach, assessing the convergence of

our chains on the basis of graphical output of the results, and compare results from

parallel chains run from different starting values: trace of the chain, plots of ergodic

averages, density estimates etc. With this we expect to detect: movement away from

the starting points, influence of the starting values of the different chains and in general

asses if the chains have achieved stable behavior.
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